×

The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations. (English) Zbl 1402.81011


MSC:

81-04 Software, source code, etc. for problems pertaining to quantum theory
81-08 Computational methods for problems pertaining to quantum theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] D.J. Gross and F. Wilczek, Ultraviolet behavior of non-Abelian gauge theories, Phys. Rev. Lett.30 (1973) 1343 [INSPIRE].
[2] H.D. Politzer, Reliable perturbative results for strong interactions?, Phys. Rev. Lett.30 (1973) 1346 [INSPIRE].
[3] T. Appelquist and H. Georgi, e+e−annihilation in gauge theories of strong interactions, Phys. Rev.D 8 (1973) 4000 [INSPIRE].
[4] G.F. Sterman and S. Weinberg, Jets from quantum chromodynamics, Phys. Rev. Lett.39 (1977) 1436 [INSPIRE].
[5] A.J. Buras, E.G. Floratos, D.A. Ross and C.T. Sachrajda, Asymptotic freedom beyond the leading order, Nucl. Phys.B 131 (1977) 308 [INSPIRE].
[6] W.A. Bardeen, A.J. Buras, D.W. Duke and T. Muta, Deep inelastic scattering beyond the leading order in asymptotically free gauge theories, Phys. Rev.D 18 (1978) 3998 [INSPIRE].
[7] G. Altarelli, R.K. Ellis and G. Martinelli, Leptoproduction and Drell-Yan processes beyond the leading approximation in chromodynamics, Nucl. Phys.B 143 (1978) 521 [Erratum ibid.B 146 (1978) 544] [INSPIRE].
[8] W. Celmaster and R.J. Gonsalves, Fourth order QCD contributions to the e+e−annihilation cross-section, Phys. Rev.D 21 (1980) 3112 [INSPIRE].
[9] R.K. Ellis, D.A. Ross and A.E. Terrano, The perturbative calculation of jet structure in e+e−annihilation, Nucl. Phys.B 178 (1981) 421 [INSPIRE].
[10] S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys.B 467 (1996) 399 [hep-ph/9512328] [INSPIRE].
[11] S. Catani and M.H. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys.B 485 (1997) 291 [Erratum ibid.B 510 (1998) 503] [hep-ph/9605323] [INSPIRE].
[12] S. Frixione, A general approach to jet cross-sections in QCD, Nucl. Phys.B 507 (1997) 295 [hep-ph/9706545] [INSPIRE].
[13] D.A. Kosower, Antenna factorization of gauge theory amplitudes, Phys. Rev.D 57 (1998) 5410 [hep-ph/9710213] [INSPIRE].
[14] J.M. Campbell, M.A. Cullen and E.W.N. Glover, Four jet event shapes in electron-positron annihilation, Eur. Phys. J.C 9 (1999) 245 [hep-ph/9809429] [INSPIRE].
[15] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n-point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys.B 425 (1994) 217 [hep-ph/9403226] [INSPIRE]. · Zbl 1049.81644
[16] F. del Aguila and R. Pittau, Recursive numerical calculus of one-loop tensor integrals, JHEP07 (2004) 017 [hep-ph/0404120] [INSPIRE].
[17] Z. Bern, L.J. Dixon and D.A. Kosower, Bootstrapping multi-parton loop amplitudes in QCD, Phys. Rev.D 73 (2006) 065013 [hep-ph/0507005] [INSPIRE].
[18] G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys.B 763 (2007) 147 [hep-ph/0609007] [INSPIRE]. · Zbl 1116.81067
[19] C. Anastasiou, R. Britto, B. Feng, Z. Kunszt and P. Mastrolia, D-dimensional unitarity cut method, Phys. Lett.B 645 (2007) 213 [hep-ph/0609191] [INSPIRE].
[20] C. Anastasiou, R. Britto, B. Feng, Z. Kunszt and P. Mastrolia, Unitarity cuts and reduction to master integrals in d dimensions for one-loop amplitudes, JHEP03 (2007) 111 [hep-ph/0612277] [INSPIRE].
[21] R.K. Ellis, W.T. Giele and Z. Kunszt, A numerical unitarity formalism for evaluating one-loop amplitudes, JHEP03 (2008) 003 [arXiv:0708.2398] [INSPIRE].
[22] R.K. Ellis, W.T. Giele, Z. Kunszt and K. Melnikov, Masses, fermions and generalized D-dimensional unitarity, Nucl. Phys.B 822 (2009) 270 [arXiv:0806.3467] [INSPIRE]. · Zbl 1196.81234
[23] W.T. Giele, Z. Kunszt and K. Melnikov, Full one-loop amplitudes from tree amplitudes, JHEP04 (2008) 049 [arXiv:0801.2237] [INSPIRE]. · Zbl 1246.81170
[24] F. Cascioli, P. Maierhofer and S. Pozzorini, Scattering amplitudes with open loops, Phys. Rev. Lett.108 (2012) 111601 [arXiv:1111.5206] [INSPIRE].
[25] P. Mastrolia, E. Mirabella and T. Peraro, Integrand reduction of one-loop scattering amplitudes through Laurent series expansion, JHEP06 (2012) 095 [Erratum ibid.11 (2012) 128] [arXiv:1203.0291] [INSPIRE]. · Zbl 1331.81218
[26] S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP06 (2002) 029 [hep-ph/0204244] [INSPIRE].
[27] P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP11 (2004) 040 [hep-ph/0409146] [INSPIRE].
[28] M. Dobbs, Incorporating next-to-leading order matrix elements for hadronic diboson production in showering event generators, Phys. Rev.D 64 (2001) 034016 [hep-ph/0103174] [INSPIRE].
[29] Y.-J. Chen, J. Collins and X.-M. Zu, NLO corrections in MC event generator for angular distribution of Drell-Yan lepton pair production, JHEP04 (2002) 041 [hep-ph/0110257] [INSPIRE].
[30] Y. Kurihara et al., QCD event generators with next-to-leading order matrix elements and parton showers, Nucl. Phys.B 654 (2003) 301 [hep-ph/0212216] [INSPIRE]. · Zbl 1010.81511
[31] Z. Nagy and D.E. Soper, Matching parton showers to NLO computations, JHEP10 (2005) 024 [hep-ph/0503053] [INSPIRE].
[32] C.W. Bauer and M.D. Schwartz, Event generation from effective field theory, Phys. Rev.D 76 (2007) 074004 [hep-ph/0607296] [INSPIRE].
[33] Z. Nagy and D.E. Soper, Parton showers with quantum interference, JHEP09 (2007) 114 [arXiv:0706.0017] [INSPIRE].
[34] W.T. Giele, D.A. Kosower and P.Z. Skands, A simple shower and matching algorithm, Phys. Rev.D 78 (2008) 014026 [arXiv:0707.3652] [INSPIRE].
[35] C.W. Bauer, F.J. Tackmann and J. Thaler, GenEvA. I. A new framework for event generation, JHEP12 (2008) 010 [arXiv:0801.4026] [INSPIRE].
[36] S. Hoeche, F. Krauss, M. Schonherr and F. Siegert, A critical appraisal of NLO + PS matching methods, JHEP09 (2012) 049 [arXiv:1111.1220] [INSPIRE].
[37] K. Hamilton, P. Nason, E. Re and G. Zanderighi, NNLOPS simulation of Higgs boson production, JHEP10 (2013) 222 [arXiv:1309.0017] [INSPIRE].
[38] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP06 (2011) 128 [arXiv:1106.0522] [INSPIRE]. · Zbl 1298.81362
[39] T. Stelzer and W.F. Long, Automatic generation of tree level helicity amplitudes, Comput. Phys. Commun.81 (1994) 357 [hep-ph/9401258] [INSPIRE].
[40] F. Caravaglios and M. Moretti, An algorithm to compute Born scattering amplitudes without Feynman graphs, Phys. Lett.B 358 (1995) 332 [hep-ph/9507237] [INSPIRE].
[41] F. Yuasa et al., Automatic computation of cross-sections in HEP: status of GRACE system, Prog. Theor. Phys. Suppl.138 (2000) 18 [hep-ph/0007053] [INSPIRE].
[42] A. Kanaki and C.G. Papadopoulos, HELAC: a package to compute electroweak helicity amplitudes, Comput. Phys. Commun.132 (2000) 306 [hep-ph/0002082] [INSPIRE]. · Zbl 1031.81507
[43] M. Moretti, T. Ohl and J. Reuter, O’Mega: an optimizing matrix element generator, hep-ph/0102195 [INSPIRE].
[44] F. Krauss, R. Kuhn and G. Soff, AMEGIC++ 1.0: a matrix element generator in C++, JHEP02 (2002) 044 [hep-ph/0109036] [INSPIRE].
[45] M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A.D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions, JHEP07 (2003) 001 [hep-ph/0206293] [INSPIRE].
[46] J. Fujimoto et al., GRACE/SUSY automatic generation of tree amplitudes in the minimal supersymmetric standard model, Comput. Phys. Commun.153 (2003) 106 [hep-ph/0208036] [INSPIRE].
[47] CompHEP collaboration, E. Boos et al., CompHEP 4.4: automatic computations from Lagrangians to events, Nucl. Instrum. Meth.A 534 (2004) 250 [hep-ph/0403113] [INSPIRE].
[48] S. Tsuno, T. Kaneko, Y. Kurihara, S. Odaka and K. Kato, GR@PPA 2.7 event generator forpp/pp¯\[ pp/ p\overline{p}\] collisions, Comput. Phys. Commun.175 (2006) 665 [hep-ph/0602213] [INSPIRE].
[49] A. Cafarella, C.G. Papadopoulos and M. Worek, Helac-Phegas: a generator for all parton level processes, Comput. Phys. Commun.180 (2009) 1941 [arXiv:0710.2427] [INSPIRE].
[50] W. Kilian, T. Ohl and J. Reuter, WHIZARD: simulating multi-particle processes at LHC and ILC, Eur. Phys. J.C 71 (2011) 1742 [arXiv:0708.4233] [INSPIRE].
[51] J. Alwall et al., MadGraph/MadEvent v4: the new web generation, JHEP09 (2007) 028 [arXiv:0706.2334] [INSPIRE].
[52] T. Gleisberg and S. Hoeche, Comix, a new matrix element generator, JHEP12 (2008) 039 [arXiv:0808.3674] [INSPIRE].
[53] A. Belyaev, N.D. Christensen and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the standard model, Comput. Phys. Commun.184 (2013) 1729 [arXiv:1207.6082] [INSPIRE]. · Zbl 1286.81009
[54] T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun.118 (1999) 153 [hep-ph/9807565] [INSPIRE].
[55] T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun.140 (2001) 418 [hep-ph/0012260] [INSPIRE]. · Zbl 0994.81082
[56] T. Gleisberg and F. Krauss, Automating dipole subtraction for QCD NLO calculations, Eur. Phys. J.C 53 (2008) 501 [arXiv:0709.2881] [INSPIRE].
[57] C.F. Berger et al., An automated implementation of on-shell methods for one-loop amplitudes, Phys. Rev.D 78 (2008) 036003 [arXiv:0803.4180] [INSPIRE].
[58] R. Frederix, T. Gehrmann and N. Greiner, Automation of the dipole subtraction method in MadGraph/MadEvent, JHEP09 (2008) 122 [arXiv:0808.2128] [INSPIRE].
[59] W.T. Giele and G. Zanderighi, On the numerical evaluation of one-loop amplitudes: the gluonic case, JHEP06 (2008) 038 [arXiv:0805.2152] [INSPIRE].
[60] M. Czakon, C.G. Papadopoulos and M. Worek, Polarizing the dipoles, JHEP08 (2009) 085 [arXiv:0905.0883] [INSPIRE].
[61] R. Frederix, S. Frixione, F. Maltoni and T. Stelzer, Automation of next-to-leading order computations in QCD: the FKS subtraction, JHEP10 (2009) 003 [arXiv:0908.4272] [INSPIRE].
[62] K. Hasegawa, S. Moch and P. Uwer, AutoDipole: automated generation of dipole subtraction terms, Comput. Phys. Commun.181 (2010) 1802 [arXiv:0911.4371] [INSPIRE]. · Zbl 1219.81244
[63] S. Hoche, F. Krauss, M. Schonherr and F. Siegert, Automating the POWHEG method in Sherpa, JHEP04 (2011) 024 [arXiv:1008.5399] [INSPIRE].
[64] S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP06 (2010) 043 [arXiv:1002.2581] [INSPIRE]. · Zbl 1290.81155
[65] P. Mastrolia, G. Ossola, T. Reiter and F. Tramontano, Scattering amplitudes from unitarity-based reduction algorithm at the integrand-level, JHEP08 (2010) 080 [arXiv:1006.0710] [INSPIRE]. · Zbl 1290.81151
[66] R. Frederix, T. Gehrmann and N. Greiner, Integrated dipoles with MadDipole in the MadGraph framework, JHEP06 (2010) 086 [arXiv:1004.2905] [INSPIRE]. · Zbl 1288.81145
[67] S. Becker, C. Reuschle and S. Weinzierl, Numerical NLO QCD calculations, JHEP12 (2010) 013 [arXiv:1010.4187] [INSPIRE]. · Zbl 1294.81267
[68] V. Hirschi et al., Automation of one-loop QCD corrections, JHEP05 (2011) 044 [arXiv:1103.0621] [INSPIRE]. · Zbl 1296.81138
[69] G. Bevilacqua et al., HELAC-NLO, Comput. Phys. Commun.184 (2013) 986 [arXiv:1110.1499] [INSPIRE].
[70] S. Becker, D. Goetz, C. Reuschle, C. Schwan and S. Weinzierl, NLO results for five, six and seven jets in electron-positron annihilation, Phys. Rev. Lett.108 (2012) 032005 [arXiv:1111.1733] [INSPIRE].
[71] G. Cullen et al., Automated one-loop calculations with GoSam, Eur. Phys. J.C 72 (2012) 1889 [arXiv:1111.2034] [INSPIRE].
[72] T. Binoth et al., Automized squark-neutralino production to next-to-leading order, Phys. Rev.D 84 (2011) 075005 [arXiv:1108.1250] [INSPIRE].
[73] S. Agrawal, T. Hahn and E. Mirabella, FormCalc 7, J. Phys. Conf. Ser.368 (2012) 012054 [arXiv:1112.0124] [INSPIRE].
[74] Z. Bern et al., Four-jet production at the Large Hadron Collider at next-to-leading order in QCD, Phys. Rev. Lett.109 (2012) 042001 [arXiv:1112.3940] [INSPIRE].
[75] S. Actis, A. Denner, L. Hofer, A. Scharf and S. Uccirati, Recursive generation of one-loop amplitudes in the standard model, JHEP04 (2013) 037 [arXiv:1211.6316] [INSPIRE].
[76] S. Badger, B. Biedermann, P. Uwer and V. Yundin, Numerical evaluation of virtual corrections to multi-jet production in massless QCD, Comput. Phys. Commun.184 (2013) 1981 [arXiv:1209.0100] [INSPIRE].
[77] D. Goncalves-Netto, D. Lopez-Val, K. Mawatari, T. Plehn and I. Wigmore, Automated squark and gluino production to next-to-leading order, Phys. Rev.D 87 (2013) 014002 [arXiv:1211.0286] [INSPIRE].
[78] S. Badger, B. Biedermann, P. Uwer and V. Yundin, Computation of multi-leg amplitudes with NJet, J. Phys. Conf. Ser.523 (2014) 012057 [arXiv:1312.7140] [INSPIRE].
[79] Z. Bern et al., The BlackHat library for one-loop amplitudes, J. Phys. Conf. Ser.523 (2014) 012051 [arXiv:1310.2808] [INSPIRE].
[80] G. Cullen et al., GoSam-2.0: a tool for automated one-loop calculations within the standard model and beyond, arXiv:1404.7096 [INSPIRE].
[81] H. van Deurzen et al., Multi-leg one-loop massive amplitudes from integrand reduction via Laurent expansion, JHEP03 (2014) 115 [arXiv:1312.6678] [INSPIRE].
[82] T. Peraro, Ninja: automated integrand reduction via Laurent expansion for one-loop amplitudes, arXiv:1403.1229 [INSPIRE]. · Zbl 1360.81021
[83] E. Byckling and K. Kajantie, Particle kinematics, Wiley, U.S.A. (1971).
[84] N.D. Christensen and C. Duhr, FeynRules — Feynman rules made easy, Comput. Phys. Commun.180 (2009) 1614 [arXiv:0806.4194] [INSPIRE].
[85] N.D. Christensen et al., A comprehensive approach to new physics simulations, Eur. Phys. J.C 71 (2011) 1541 [arXiv:0906.2474] [INSPIRE].
[86] N.D. Christensen, C. Duhr, B. Fuks, J. Reuter and C. Speckner, Introducing an interface between WHIZARD and FeynRules, Eur. Phys. J.C 72 (2012) 1990 [arXiv:1010.3251] [INSPIRE].
[87] C. Duhr and B. Fuks, A superspace module for the FeynRules package, Comput. Phys. Commun.182 (2011) 2404 [arXiv:1102.4191] [INSPIRE]. · Zbl 1262.81169
[88] A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — a complete toolbox for tree-level phenomenology, Comput. Phys. Commun.185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
[89] A. Alloul, J. D’Hondt, K. De Causmaecker, B. Fuks and M. Rausch de Traubenberg, Automated mass spectrum generation for new physics, Eur. Phys. J.C 73 (2013) 2325 [arXiv:1301.5932] [INSPIRE].
[90] C. Degrande, Automated computation of the R2rational terms and ultraviolet counterterms by NLOCT: an illustration on the 2HDM, in preparation.
[91] H. Murayama, I. Watanabe and K. Hagiwara, HELAS: helicity amplitude subroutines for Feynman diagram evaluations, KEK-91-11, Japan (1992) [INSPIRE].
[92] P. de Aquino, W. Link, F. Maltoni, O. Mattelaer and T. Stelzer, ALOHA: automatic libraries of helicity amplitudes for Feynman diagram computations, Comput. Phys. Commun.183 (2012) 2254 [arXiv:1108.2041] [INSPIRE].
[93] C. Degrande et al., UFO — the Universal FeynRules Output, Comput. Phys. Commun.183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].
[94] J. Alwall et al., A standard format for Les Houches event files, Comput. Phys. Commun.176 (2007) 300 [hep-ph/0609017] [INSPIRE].
[95] J.M. Butterworth et al., The tools and Monte Carlo working group summary report, arXiv:1003.1643 [INSPIRE].
[96] E.N. Argyres et al., Stable calculations for unstable particles: restoring gauge invariance, Phys. Lett.B 358 (1995) 339 [hep-ph/9507216] [INSPIRE].
[97] W. Beenakker et al., The Fermion loop scheme for finite width effects in e+e−annihilation into four fermions, Nucl. Phys.B 500 (1997) 255 [hep-ph/9612260] [INSPIRE].
[98] G. Passarino, Unstable particles and nonconserved currents: a generalization of the fermion loop scheme, Nucl. Phys.B 574 (2000) 451 [hep-ph/9911482] [INSPIRE].
[99] W. Beenakker, F.A. Berends and A.P. Chapovsky, An effective Lagrangian approach for unstable particles, Nucl. Phys.B 573 (2000) 503 [hep-ph/9909472] [INSPIRE].
[100] W. Beenakker, A.P. Chapovsky, A. Kanaki, C.G. Papadopoulos and R. Pittau, Towards an effective Lagrangian approach to fermion loop corrections, Nucl. Phys.B 667 (2003) 359 [hep-ph/0303105] [INSPIRE].
[101] M. Beneke, A.P. Chapovsky, A. Signer and G. Zanderighi, Effective theory approach to unstable particle production, Phys. Rev. Lett.93 (2004) 011602 [hep-ph/0312331] [INSPIRE].
[102] A. Denner, S. Dittmaier, M. Roth and D. Wackeroth, Predictions for all processes e+e− → 4 fermions + γ, Nucl. Phys.B 560 (1999) 33 [hep-ph/9904472] [INSPIRE].
[103] A. Denner, S. Dittmaier, M. Roth and L.H. Wieders, Electroweak corrections to charged-current e+e− → 4 fermion processes: technical details and further results, Nucl. Phys.B 724 (2005) 247 [Erratum ibid.B 854 (2012) 504] [hep-ph/0505042] [INSPIRE].
[104] F. Staub, SARAH 3.2: Dirac gauginos, UFO output and more, Comput. Phys. Commun.184 (2013) 1792 [arXiv:1207.0906] [INSPIRE].
[105] N.D. Christensen et al., Simulating spin-\[32 \frac{3}{2}\] particles at colliders, Eur. Phys. J.C 73 (2013) 2580 [arXiv:1308.1668] [INSPIRE].
[106] J. Alwall et al., Computing decay rates for new physics theories with FeynRules and MadGraph5/aMC@NLO, arXiv:1402.1178 [INSPIRE].
[107] F.A. Berends, R. Kleiss, P. De Causmaecker, R. Gastmans and T.T. Wu, Single Bremsstrahlung processes in gauge theories, Phys. Lett.B 103 (1981) 124 [INSPIRE].
[108] P. De Causmaecker, R. Gastmans, W. Troost and T.T. Wu, Multiple Bremsstrahlung in gauge theories at high-energies. 1. General formalism for quantum electrodynamics, Nucl. Phys.B 206 (1982) 53 [INSPIRE].
[109] R. Kleiss and W.J. Stirling, Spinor techniques for calculatingpp¯\[ p\overline{p} → W\]±/Z0+ jets, Nucl. Phys.B 262 (1985) 235 [INSPIRE].
[110] R. Gastmans and T. Wu, The ubiquitous photon: helicity method for QED and QCD, Int. Ser. Monogr. Phys.80 (1990) 1 [INSPIRE].
[111] Z. Xu, D.-H. Zhang and L. Chang, Helicity amplitudes for multiple Bremsstrahlung in massless non-Abelian gauge theories, Nucl. Phys.B 291 (1987) 392 [INSPIRE].
[112] J.F. Gunion and Z. Kunszt, Improved analytic techniques for tree graph calculations and theGgqq¯\[ Ggq\overline{q}\] lepton anti-lepton subprocess, Phys. Lett.B 161 (1985) 333 [INSPIRE].
[113] K. Hagiwara and D. Zeppenfeld, Helicity amplitudes for heavy lepton production in e+e−annihilation, Nucl. Phys.B 274 (1986) 1 [INSPIRE].
[114] M.L. Mangano and S.J. Parke, Multiparton amplitudes in gauge theories, Phys. Rept.200 (1991) 301 [hep-th/0509223] [INSPIRE].
[115] V. Del Duca, L.J. Dixon and F. Maltoni, New color decompositions for gauge amplitudes at tree and loop level, Nucl. Phys.B 571 (2000) 51 [hep-ph/9910563] [INSPIRE].
[116] F. Maltoni, K. Paul, T. Stelzer and S. Willenbrock, Color flow decomposition of QCD amplitudes, Phys. Rev.D 67 (2003) 014026 [hep-ph/0209271] [INSPIRE].
[117] C. Duhr, S. Hoeche and F. Maltoni, Color-dressed recursive relations for multi-parton amplitudes, JHEP08 (2006) 062 [hep-ph/0607057] [INSPIRE].
[118] K. Hagiwara, J. Kanzaki, Q. Li and K. Mawatari, HELAS and MadGraph/MadEvent with spin-2 particles, Eur. Phys. J.C 56 (2008) 435 [arXiv:0805.2554] [INSPIRE].
[119] K. Hagiwara, J. Kanzaki, N. Okamura, D. Rainwater and T. Stelzer, Fast calculation of HELAS amplitudes using graphics processing unit (GPU), Eur. Phys. J.C 66 (2010) 477 [arXiv:0908.4403] [INSPIRE].
[120] K. Hagiwara, J. Kanzaki, N. Okamura, D. Rainwater and T. Stelzer, Calculation of HELAS amplitudes for QCD processes using graphics processing unit (GPU), Eur. Phys. J.C 70 (2010) 513 [arXiv:0909.5257] [INSPIRE].
[121] M. Bahr et al., HERWIG++ physics and manual, Eur. Phys. J.C 58 (2008) 639 [arXiv:0803.0883] [INSPIRE].
[122] J. Bellm et al., HERWIG++ 2.7 release note, arXiv:1310.6877 [INSPIRE].
[123] T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun.178 (2008) 852 [arXiv:0710.3820] [INSPIRE]. · Zbl 1196.81038
[124] N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, The hierarchy problem and new dimensions at a millimeter, Phys. Lett.B 429 (1998) 263 [hep-ph/9803315] [INSPIRE]. · Zbl 1355.81103
[125] R. Frederix et al., Four-lepton production at hadron colliders: aMC@NLO predictions with theoretical uncertainties, JHEP02 (2012) 099 [arXiv:1110.4738] [INSPIRE].
[126] J. Alwall, Q. Li and F. Maltoni, Matched predictions for Higgs production via heavy-quark loops in the SM and beyond, Phys. Rev.D 85 (2012) 014031 [arXiv:1110.1728] [INSPIRE].
[127] R. Frederix et al., Higgs pair production at the LHC with NLO and parton-shower effects, Phys. Lett.B 732 (2014) 142 [arXiv:1401.7340] [INSPIRE].
[128] K. Kondo, Dynamical likelihood method for reconstruction of events with missing momentum. 1: method and toy models, J. Phys. Soc. Jap.57 (1988) 4126 [INSPIRE].
[129] R.H. Dalitz and G.R. Goldstein, The decay and polarization properties of the top quark, Phys. Rev.D 45 (1992) 1531 [INSPIRE].
[130] K. Kondo, Dynamical likelihood method and top quark mass measurement at CDF, J. Phys. Conf. Ser.53 (2006) 202 [INSPIRE].
[131] Y. Gao et al., Spin determination of single-produced resonances at hadron colliders, Phys. Rev.D 81 (2010) 075022 [arXiv:1001.3396] [INSPIRE].
[132] P. Avery et al., Precision studies of the Higgs boson decay channel H → ZZ → 4ℓ with MEKD, Phys. Rev.D 87 (2013) 055006 [arXiv:1210.0896] [INSPIRE].
[133] J.M. Campbell, W.T. Giele and C. Williams, The matrix element method at next-to-leading order, JHEP11 (2012) 043 [arXiv:1204.4424] [INSPIRE].
[134] J.S. Gainer, J. Lykken, K.T. Matchev, S. Mrenna and M. Park, Geolocating the Higgs boson candidate at the LHC, Phys. Rev. Lett.111 (2013) 041801 [arXiv:1304.4936] [INSPIRE].
[135] T. Plehn, P. Schichtel and D. Wiegand, MadMax, or where boosted significances come from, arXiv:1311.2591 [INSPIRE].
[136] P. Artoisenet, V. Lemaitre, F. Maltoni and O. Mattelaer, Automation of the matrix element reweighting method, JHEP12 (2010) 068 [arXiv:1007.3300] [INSPIRE]. · Zbl 1294.81311
[137] P. Artoisenet and O. Mattelaer, MadWeight5.0, in preparation.
[138] J. Alwall, A. Freitas and O. Mattelaer, The matrix element method and QCD radiation, Phys. Rev.D 83 (2011) 074010 [arXiv:1010.2263] [INSPIRE].
[139] P. Artoisenet, P. de Aquino, F. Maltoni and O. Mattelaer, Unravellingtt¯h \[t\overline{t} h\] via the matrix element method, Phys. Rev. Lett.111 (2013) 091802 [arXiv:1304.6414] [INSPIRE].
[140] T. Gleisberg et al., SHERPA 1.α: a proof of concept version, JHEP02 (2004) 056 [hep-ph/0311263] [INSPIRE].
[141] T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP05 (2006) 026 [hep-ph/0603175] [INSPIRE]. · Zbl 1368.81015
[142] G. Corcella et al., HERWIG 6: an event generator for hadron emission reactions with interfering gluons (including supersymmetric processes), JHEP01 (2001) 010 [hep-ph/0011363] [INSPIRE].
[143] G. Corcella et al., HERWIG 6.5 release note, hep-ph/0210213 [INSPIRE].
[144] S. Catani, Y.L. Dokshitzer, M.H. Seymour and B.R. Webber, Longitudinally invariant Ktclustering algorithms for hadron hadron collisions, Nucl. Phys.B 406 (1993) 187 [INSPIRE].
[145] L. Lönnblad, Correcting the color dipole cascade model with fixed order matrix elements, JHEP05 (2002) 046 [hep-ph/0112284] [INSPIRE].
[146] L. Lönnblad and S. Prestel, Matching tree-level matrix elements with interleaved showers, JHEP03 (2012) 019 [arXiv:1109.4829] [INSPIRE].
[147] L. Lönnblad and S. Prestel, Unitarising matrix element + parton shower merging, JHEP02 (2013) 094 [arXiv:1211.4827] [INSPIRE]. · Zbl 1342.81693
[148] J. Alwall et al., Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions, Eur. Phys. J.C 53 (2008) 473 [arXiv:0706.2569] [INSPIRE].
[149] J. Alwall, S. de Visscher and F. Maltoni, QCD radiation in the production of heavy colored particles at the LHC, JHEP02 (2009) 017 [arXiv:0810.5350] [INSPIRE].
[150] P. de Aquino, F. Maltoni, K. Mawatari and B. Oexl, Light gravitino production in association with gluinos at the LHC, JHEP10 (2012) 008 [arXiv:1206.7098] [INSPIRE].
[151] P. Artoisenet et al., A framework for Higgs characterisation, JHEP11 (2013) 043 [arXiv:1306.6464] [INSPIRE].
[152] F. Maltoni and T. Stelzer, MadEvent: automatic event generation with MadGraph, JHEP02 (2003) 027 [hep-ph/0208156] [INSPIRE].
[153] R. Kleiss and R. Pittau, Weight optimization in multichannel Monte Carlo, Comput. Phys. Commun.83 (1994) 141 [hep-ph/9405257] [INSPIRE].
[154] G. Passarino and M.J.G. Veltman, One loop corrections for e+e−annihilation into μ+μ−in the Weinberg model, Nucl. Phys.B 160 (1979) 151 [INSPIRE].
[155] A.I. Davydychev, A simple formula for reducing Feynman diagrams to scalar integrals, Phys. Lett.B 263 (1991) 107 [INSPIRE].
[156] G. Ossola, C.G. Papadopoulos and R. Pittau, CutTools: a program implementing the OPP reduction method to compute one-loop amplitudes, JHEP03 (2008) 042 [arXiv:0711.3596] [INSPIRE].
[157] G. ’t Hooft and M.J.G. Veltman, Regularization and renormalization of gauge fields, Nucl. Phys.B 44 (1972) 189 [INSPIRE].
[158] G. Ossola, C.G. Papadopoulos and R. Pittau, On the rational terms of the one-loop amplitudes, JHEP05 (2008) 004 [arXiv:0802.1876] [INSPIRE].
[159] P. Draggiotis, M.V. Garzelli, C.G. Papadopoulos and R. Pittau, Feynman rules for the rational part of the QCD 1-loop amplitudes, JHEP04 (2009) 072 [arXiv:0903.0356] [INSPIRE].
[160] M.V. Garzelli, I. Malamos and R. Pittau, Feynman rules for the rational part of the electroweak 1-loop amplitudes, JHEP01 (2010) 040 [Erratum ibid.10 (2010) 097] [arXiv:0910.3130] [INSPIRE]. · Zbl 1291.81449
[161] M.V. Garzelli, I. Malamos and R. Pittau, Feynman rules for the rational part of the electroweak 1-loop amplitudes in the Rxi gauge and in the unitary gauge, JHEP01 (2011) 029 [arXiv:1009.4302] [INSPIRE]. · Zbl 1214.81328
[162] H.-S. Shao, Y.-J. Zhang and K.-T. Chao, Feynman rules for the rational part of the standard model one-loop amplitudes in the ’t Hooft-Veltman γ5scheme, JHEP09 (2011) 048 [arXiv:1106.5030] [INSPIRE]. · Zbl 1301.81360
[163] R. Pittau, Primary Feynman rules to calculate the epsilon-dimensional integrand of any 1-loop amplitude, JHEP02 (2012) 029 [arXiv:1111.4965] [INSPIRE]. · Zbl 1309.81283
[164] H.-S. Shao and Y.-J. Zhang, Feynman rules for the rational part of one-loop QCD corrections in the MSSM, JHEP06 (2012) 112 [arXiv:1205.1273] [INSPIRE]. · Zbl 1397.81012
[165] B. Page and R. Pittau, R2vertices for the effective ggH theory, JHEP09 (2013) 078 [arXiv:1307.6142] [INSPIRE].
[166] T. Binoth, J.P. Guillet and G. Heinrich, Algebraic evaluation of rational polynomials in one-loop amplitudes, JHEP02 (2007) 013 [hep-ph/0609054] [INSPIRE].
[167] S.D. Badger, Direct extraction of one loop rational terms, JHEP01 (2009) 049 [arXiv:0806.4600] [INSPIRE]. · Zbl 1243.81219
[168] H.-S. Shao, Iregi user manual, unpublished.
[169] J. Fleischer, T. Riemann and V. Yundin, New developments in PJFry, PoS(LL2012)020 [arXiv:1210.4095] [INSPIRE].
[170] V. Yundin, Massive loop corrections for collider physics, Ph.D. thesis, Humboldt-Universitat zu Berlin, Berlin Germany (2012).
[171] P. Nason, MINT: a computer program for adaptive Monte Carlo integration and generation of unweighted distributions, arXiv:0709.2085 [INSPIRE].
[172] S. Frixione, P. Nason and B.R. Webber, Matching NLO QCD and parton showers in heavy flavor production, JHEP08 (2003) 007 [hep-ph/0305252] [INSPIRE].
[173] S. Frixione, E. Laenen, P. Motylinski and B.R. Webber, Single-top production in MC@NLO, JHEP03 (2006) 092 [hep-ph/0512250] [INSPIRE].
[174] P. Torrielli and S. Frixione, Matching NLO QCD computations with PYTHIA using MC@NLO, JHEP04 (2010) 110 [arXiv:1002.4293] [INSPIRE]. · Zbl 1272.81198
[175] S. Frixione, F. Stoeckli, P. Torrielli and B.R. Webber, NLO QCD corrections in HERWIG++ with MC@NLO, JHEP01 (2011) 053 [arXiv:1010.0568] [INSPIRE]. · Zbl 1214.81299
[176] L. Lönnblad, ARIADNE version 4: a program for simulation of QCD cascades implementing the color dipole model, Comput. Phys. Commun.71 (1992) 15 [INSPIRE].
[177] Z. Nagy and D.E. Soper, A new parton shower algorithm: shower evolution, matching at leading and next-to-leading order level, hep-ph/0601021 [INSPIRE].
[178] M. Dinsdale, M. Ternick and S. Weinzierl, Parton showers from the dipole formalism, Phys. Rev.D 76 (2007) 094003 [arXiv:0709.1026] [INSPIRE].
[179] S. Schumann and F. Krauss, A parton shower algorithm based on Catani-Seymour dipole factorisation, JHEP03 (2008) 038 [arXiv:0709.1027] [INSPIRE].
[180] J.-C. Winter and F. Krauss, Initial-state showering based on colour dipoles connected to incoming parton lines, JHEP07 (2008) 040 [arXiv:0712.3913] [INSPIRE].
[181] S. Platzer and S. Gieseke, Dipole showers and automated NLO matching in HERWIG++, Eur. Phys. J.C 72 (2012) 2187 [arXiv:1109.6256] [INSPIRE].
[182] M. Ritzmann, D.A. Kosower and P. Skands, Antenna showers with hadronic initial states, Phys. Lett.B 718 (2013) 1345 [arXiv:1210.6345] [INSPIRE]. · Zbl 1372.81157
[183] C. Friberg, G. Gustafson and J. Hakkinen, Color connections in e+e−annihilation, Nucl. Phys.B 490 (1997) 289 [hep-ph/9604347] [INSPIRE].
[184] W.T. Giele, D.A. Kosower and P.Z. Skands, Higher-order corrections to timelike jets, Phys. Rev.D 84 (2011) 054003 [arXiv:1102.2126] [INSPIRE].
[185] S. Platzer and M. Sjodahl, Subleading Ncimproved parton showers, JHEP07 (2012) 042 [arXiv:1201.0260] [INSPIRE].
[186] Z. Nagy and D.E. Soper, Parton shower evolution with subleading color, JHEP06 (2012) 044 [arXiv:1202.4496] [INSPIRE].
[187] G. Altarelli and G. Parisi, Asymptotic freedom in parton language, Nucl. Phys.B 126 (1977) 298 [INSPIRE].
[188] K. Odagiri, Color connection structure of supersymmetric QCD (2 → 2) processes, JHEP10 (1998) 006 [hep-ph/9806531] [INSPIRE].
[189] P. Nason and B. Webber, Next-to-leading-order event generators, Ann. Rev. Nucl. Part. Sci.62 (2012) 187 [arXiv:1202.1251] [INSPIRE].
[190] S. Hoeche, F. Krauss and M. Schonherr, Uncertainties in MEPS@NLO calculations of h + jets, arXiv:1401.7971 [INSPIRE].
[191] R. Frederix and S. Frixione, Merging meets matching in MC@NLO, JHEP12 (2012) 061 [arXiv:1209.6215] [INSPIRE].
[192] S. Catani, F. Krauss, R. Kuhn and B.R. Webber, QCD matrix elements + parton showers, JHEP11 (2001) 063 [hep-ph/0109231] [INSPIRE].
[193] F. Krauss, Matrix elements and parton showers in hadronic interactions, JHEP08 (2002) 015 [hep-ph/0205283] [INSPIRE].
[194] S. Mrenna and P. Richardson, Matching matrix elements and parton showers with HERWIG and PYTHIA, JHEP05 (2004) 040 [hep-ph/0312274] [INSPIRE].
[195] N. Lavesson and L. Lönnblad, W + jets matrix elements and the dipole cascade, JHEP07 (2005) 054 [hep-ph/0503293] [INSPIRE].
[196] S. Hoeche, F. Krauss, S. Schumann and F. Siegert, QCD matrix elements and truncated showers, JHEP05 (2009) 053 [arXiv:0903.1219] [INSPIRE].
[197] K. Hamilton, P. Richardson and J. Tully, A modified CKKW matrix element merging approach to angular-ordered parton showers, JHEP11 (2009) 038 [arXiv:0905.3072] [INSPIRE].
[198] N. Lavesson and L. Lönnblad, Extending CKKW-merging to one-loop matrix elements, JHEP12 (2008) 070 [arXiv:0811.2912] [INSPIRE].
[199] K. Hamilton and P. Nason, Improving NLO-parton shower matched simulations with higher order matrix elements, JHEP06 (2010) 039 [arXiv:1004.1764] [INSPIRE].
[200] S. Hoche, F. Krauss, M. Schonherr and F. Siegert, NLO matrix elements and truncated showers, JHEP08 (2011) 123 [arXiv:1009.1127] [INSPIRE].
[201] S. Alioli, K. Hamilton and E. Re, Practical improvements and merging of POWHEG simulations for vector boson production, JHEP09 (2011) 104 [arXiv:1108.0909] [INSPIRE].
[202] S. Hoeche, F. Krauss, M. Schonherr and F. Siegert, QCD matrix elements + parton showers: the NLO case, JHEP04 (2013) 027 [arXiv:1207.5030] [INSPIRE].
[203] S. Plätzer, Controlling inclusive cross sections in parton shower + matrix element merging, JHEP08 (2013) 114 [arXiv:1211.5467] [INSPIRE].
[204] S. Alioli et al., Combining higher-order resummation with multiple NLO calculations and parton showers in GENEVA, JHEP09 (2013) 120 [arXiv:1211.7049] [INSPIRE].
[205] L. Lönnblad and S. Prestel, Merging multi-leg NLO matrix elements with parton showers, JHEP03 (2013) 166 [arXiv:1211.7278] [INSPIRE].
[206] K. Hamilton, P. Nason, C. Oleari and G. Zanderighi, Merging H/W/Z + 0 and 1 jet at NLO with no merging scale: a path to parton shower + NNLO matching, JHEP05 (2013) 082 [arXiv:1212.4504] [INSPIRE].
[207] S. Alioli et al., Matching fully differential NNLO calculations and parton showers, JHEP06 (2014) 089 [arXiv:1311.0286] [INSPIRE].
[208] G. Bozzi, S. Catani, D. de Florian and M. Grazzini, Transverse-momentum resummation and the spectrum of the Higgs boson at the LHC, Nucl. Phys.B 737 (2006) 73 [hep-ph/0508068] [INSPIRE]. · Zbl 1109.81387
[209] R.G. Stuart, Gauge invariance, analyticity and physical observables at the Z0resonance, Phys. Lett.B 262 (1991) 113 [INSPIRE].
[210] A. Aeppli, G.J. van Oldenborgh and D. Wyler, Unstable particles in one loop calculations, Nucl. Phys.B 428 (1994) 126 [hep-ph/9312212] [INSPIRE].
[211] S. Frixione, E. Laenen, P. Motylinski and B.R. Webber, Angular correlations of lepton pairs from vector boson and top quark decays in Monte Carlo simulations, JHEP04 (2007) 081 [hep-ph/0702198] [INSPIRE].
[212] P. Richardson, Spin correlations in Monte Carlo simulations, JHEP11 (2001) 029 [hep-ph/0110108] [INSPIRE].
[213] P. Artoisenet, R. Frederix, O. Mattelaer and R. Rietkerk, Automatic spin-entangled decays of heavy resonances in Monte Carlo simulations, JHEP03 (2013) 015 [arXiv:1212.3460] [INSPIRE].
[214] A.S. Papanastasiou, R. Frederix, S. Frixione, V. Hirschi and F. Maltoni, Single-top t-channel production with off-shell and non-resonant effects, Phys. Lett.B 726 (2013) 223 [arXiv:1305.7088] [INSPIRE].
[215] J. Conway, Pretty Good Simulator webpage, http://www.physics.ucdavis.edu/∼conway/research/software/pgs/pgs4-general.htm.
[216] DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
[217] S. Ovyn, X. Rouby and V. Lemaitre, DELPHES, a framework for fast simulation of a generic collider experiment, arXiv:0903.2225 [INSPIRE].
[218] SM Working group collaboration, Proceedings of the workshop physics at TeV colliders, Les Houches, 2013, to appear.
[219] A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J.C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE]. · Zbl 1369.81126
[220] M. Cacciari, G.P. Salam and G. Soyez, The anti-ktjet clustering algorithm, JHEP04 (2008) 063 [arXiv:0802.1189] [INSPIRE].
[221] S. Frixione, Isolated photons in perturbative QCD, Phys. Lett.B 429 (1998) 369 [hep-ph/9801442] [INSPIRE].
[222] R. Frederix, E. Re and P. Torrielli, Single-top t-channel hadroproduction in the four-flavour scheme with POWHEG and aMC@NLO, JHEP09 (2012) 130 [arXiv:1207.5391] [INSPIRE].
[223] J.M. Campbell and R.K. Ellis, Next-to-leading order corrections to W + 2 jet and Z + 2 jet production at hadron colliders, Phys. Rev.D 65 (2002) 113007 [hep-ph/0202176] [INSPIRE].
[224] J.M. Campbell, R.K. Ellis and D.L. Rainwater, Next-to-leading order QCD predictions for W +2 jet and Z + 2 jet production at the CERN LHC, Phys. Rev.D 68 (2003) 094021 [hep-ph/0308195] [INSPIRE].
[225] J.M. Campbell, R.K. Ellis, P. Nason and G. Zanderighi, W and Z bosons in association with two jets using the POWHEG method, JHEP08 (2013) 005 [arXiv:1303.5447] [INSPIRE].
[226] J.M. Campbell et al., Associated production of a W boson and one b jet, Phys. Rev.D 79 (2009) 034023 [arXiv:0809.3003] [INSPIRE].
[227] J.M. Campbell, R.K. Ellis, F. Maltoni and S. Willenbrock, Associated production of a Z boson and a single heavy quark jet, Phys. Rev.D 69 (2004) 074021 [hep-ph/0312024] [INSPIRE].
[228] J.M. Campbell, R.K. Ellis, F. Maltoni and S. Willenbrock, Production of a Z boson and two jets with one heavy-quark tag, Phys. Rev.D 73 (2006) 054007 [Erratum ibid.D 77 (2008) 019903] [hep-ph/0510362] [INSPIRE].
[229] J.M. Campbell, R.K. Ellis, F. Maltoni and S. Willenbrock, Production of a W boson and two jets with one b−quark tag, Phys. Rev.D 75 (2007) 054015 [hep-ph/0611348] [INSPIRE].
[230] J.M. Campbell, F. Caola, F. Febres Cordero, L. Reina and D. Wackeroth, NLO QCD predictions for W + 1 jet and W + 2 jet production with at least one b jet at the 7 TeV LHC, Phys. Rev.D 86 (2012) 034021 [arXiv:1107.3714] [INSPIRE].
[231] S. Alioli, P. Nason, C. Oleari and E. Re, NLO vector-boson production matched with shower in POWHEG, JHEP07 (2008) 060 [arXiv:0805.4802] [INSPIRE].
[232] S. Alioli, P. Nason, C. Oleari and E. Re, Vector boson plus one jet production in POWHEG, JHEP01 (2011) 095 [arXiv:1009.5594] [INSPIRE]. · Zbl 1214.81343
[233] E. Re, NLO corrections merged with parton showers for Z + 2 jets production using the POWHEG method, JHEP10 (2012) 031 [arXiv:1204.5433] [INSPIRE].
[234] R.K. Ellis, K. Melnikov and G. Zanderighi, Generalized unitarity at work: first NLO QCD results for hadronic W + 3 jet production, JHEP04 (2009) 077 [arXiv:0901.4101] [INSPIRE].
[235] K. Melnikov and G. Zanderighi, W + 3 jet production at the LHC as a signal or background, Phys. Rev.D 81 (2010) 074025 [arXiv:0910.3671] [INSPIRE].
[236] C.F. Berger et al., Precise predictions for W + 3 jet production at hadron colliders, Phys. Rev. Lett.102 (2009) 222001 [arXiv:0902.2760] [INSPIRE].
[237] C.F. Berger et al., Next-to-leading order QCD predictions for W + 3-jet distributions at hadron colliders, Phys. Rev.D 80 (2009) 074036 [arXiv:0907.1984] [INSPIRE].
[238] C.F. Berger et al., Next-to-leading order QCD predictions for Z, γ* + 3-jet distributions at the Tevatron, Phys. Rev.D 82 (2010) 074002 [arXiv:1004.1659] [INSPIRE].
[239] C.F. Berger et al., Precise predictions for W + 4 jet production at the Large Hadron Collider, Phys. Rev. Lett.106 (2011) 092001 [arXiv:1009.2338] [INSPIRE].
[240] H. Ita et al., Precise predictions for Z + 4 jets at hadron colliders, Phys. Rev.D 85 (2012) 031501 [arXiv:1108.2229] [INSPIRE].
[241] S. Hoeche, F. Krauss, M. Schonherr and F. Siegert, W + n-jet predictions at the Large Hadron Collider at next-to-leading order matched with a parton shower, Phys. Rev. Lett.110 (2013) 052001 [arXiv:1201.5882] [INSPIRE].
[242] S. Catani, M. Fontannaz, J.P. Guillet and E. Pilon, Cross-section of isolated prompt photons in hadron hadron collisions, JHEP05 (2002) 028 [hep-ph/0204023] [INSPIRE].
[243] Z. Bern et al., Driving missing data at next-to-leading order, Phys. Rev.D 84 (2011) 114002 [arXiv:1106.1423] [INSPIRE].
[244] K. Arnold et al., VBFNLO: a parton level Monte Carlo for processes with electroweak bosons — manual for version 2.5.0, arXiv:1107.4038 [INSPIRE].
[245] B. Jager, S. Schneider and G. Zanderighi, Next-to-leading order QCD corrections to electroweak Zjj production in the POWHEG BOX, JHEP09 (2012) 083 [arXiv:1207.2626] [INSPIRE].
[246] B. Mele, P. Nason and G. Ridolfi, QCD radiative corrections to Z boson pair production in hadronic collisions, Nucl. Phys.B 357 (1991) 409 [INSPIRE].
[247] J. Ohnemus and J.F. Owens, An order αscalculation of hadronic ZZ production, Phys. Rev.D 43 (1991) 3626 [INSPIRE].
[248] S. Frixione, P. Nason and G. Ridolfi, Strong corrections to W Z production at hadron colliders, Nucl. Phys.B 383 (1992) 3 [INSPIRE].
[249] J. Ohnemus, An order αscalculation of hadronic W−W+production, Phys. Rev.D 44 (1991) 1403 [INSPIRE].
[250] J. Ohnemus, An order αscalculation of hadronic W±Z production, Phys. Rev.D 44 (1991) 3477 [INSPIRE].
[251] S. Frixione, A next-to-leading order calculation of the cross-section for the production of W+W−pairs in hadronic collisions, Nucl. Phys.B 410 (1993) 280 [INSPIRE].
[252] J.M. Campbell and R.K. Ellis, An update on vector boson pair production at hadron colliders, Phys. Rev.D 60 (1999) 113006 [hep-ph/9905386] [INSPIRE].
[253] L.J. Dixon, Z. Kunszt and A. Signer, Vector boson pair production in hadronic collisions at order αs: lepton correlations and anomalous couplings, Phys. Rev.D 60 (1999) 114037 [hep-ph/9907305] [INSPIRE].
[254] D. De Florian and A. Signer, Wγ and Zγ production at hadron colliders, Eur. Phys. J.C 16 (2000) 105 [hep-ph/0002138] [INSPIRE].
[255] N. Greiner et al., NLO QCD corrections to the production of W+W−plus two jets at the LHC, Phys. Lett.B 713 (2012) 277 [arXiv:1202.6004] [INSPIRE].
[256] J.M. Campbell, R.K. Ellis and C. Williams, Vector boson pair production at the LHC, JHEP07 (2011) 018 [arXiv:1105.0020] [INSPIRE].
[257] P. Nason and G. Ridolfi, A positive-weight next-to-leading-order Monte Carlo for Z pair hadroproduction, JHEP08 (2006) 077 [hep-ph/0606275] [INSPIRE].
[258] T. Melia, P. Nason, R. Rontsch and G. Zanderighi, W+W−, W Z and ZZ production in the POWHEG BOX, JHEP11 (2011) 078 [arXiv:1107.5051] [INSPIRE].
[259] P. Nason and G. Zanderighi, W+W−, W Z and ZZ production in the POWHEG-BOX-V 2, Eur. Phys. J.C 74 (2014) 2702 [arXiv:1311.1365] [INSPIRE].
[260] V. Del Duca, F. Maltoni, Z. Nagy and Z. Trócsányi, QCD radiative corrections to prompt diphoton production in association with a jet at hadron colliders, JHEP04 (2003) 059 [hep-ph/0303012] [INSPIRE].
[261] T. Gehrmann, N. Greiner and G. Heinrich, Precise QCD predictions for the production of a photon pair in association with two jets, Phys. Rev. Lett.111 (2013) 222002 [arXiv:1308.3660] [INSPIRE].
[262] S. Badger, A. Guffanti and V. Yundin, Next-to-leading order QCD corrections to di-photon production in association with up to three jets at the Large Hadron Collider, JHEP03 (2014) 122 [arXiv:1312.5927] [INSPIRE].
[263] Z. Bern et al., Next-to-leading order diphoton + 2-jet production at the LHC, arXiv:1312.0592 [INSPIRE].
[264] Z. Bern et al., Next-to-leading order γγ + 2-jet production at the LHC, arXiv:1402.4127 [INSPIRE].
[265] T. Melia, K. Melnikov, R. Rontsch and G. Zanderighi, Next-to-leading order QCD predictions for W+W+jj production at the LHC, JHEP12 (2010) 053 [arXiv:1007.5313] [INSPIRE].
[266] F. Campanario, M. Kerner, L.D. Ninh and D. Zeppenfeld, Next-to-leading order QCD corrections to W+W+and W−W−production in association with two jets, Phys. Rev.D 89 (2014) 054009 [arXiv:1311.6738] [INSPIRE].
[267] J.M. Campbell, H.B. Hartanto and C. Williams, Next-to-leading order predictions for Zγ + jet and Zγγ final states at the LHC, JHEP11 (2012) 162 [arXiv:1208.0566] [INSPIRE].
[268] F. Campanario, M. Kerner, L.D. Ninh and D. Zeppenfeld, Next-to-leading order QCD corrections to Wγ production in association with two jets, arXiv:1402.0505 [INSPIRE].
[269] F. Campanario, M. Kerner, L.D. Ninh and D. Zeppenfeld, NLO QCD corrections to WZjj production at the LHC, arXiv:1310.4369 [INSPIRE].
[270] F. Campanario, C. Englert, M. Spannowsky and D. Zeppenfeld, NLO-QCD corrections to Wγj production, Europhys. Lett.88 (2009) 11001 [arXiv:0908.1638] [INSPIRE].
[271] F. Campanario, C. Englert and M. Spannowsky, Precise predictions for (non-standard) Wγ + jet production, Phys. Rev.D 83 (2011) 074009 [arXiv:1010.1291] [INSPIRE].
[272] F. Campanario, C. Englert, S. Kallweit, M. Spannowsky and D. Zeppenfeld, NLO QCD corrections to W Z + jet production with leptonic decays, JHEP07 (2010) 076 [arXiv:1006.0390] [INSPIRE].
[273] B. Jager and G. Zanderighi, Electroweak W+W−jj prodution at NLO in QCD matched with parton shower in the POWHEG-BOX, JHEP04 (2013) 024 [arXiv:1301.1695] [INSPIRE].
[274] F. Schissler and D. Zeppenfeld, Parton shower effects on W and Z production via vector boson fusion at NLO QCD, JHEP04 (2013) 057 [arXiv:1302.2884] [INSPIRE].
[275] B. Jäger, A. Karlberg and G. Zanderighi, Electroweak ZZjj production in the standard model and beyond in the POWHEG-BOX-V 2, JHEP03 (2014) 141 [arXiv:1312.3252] [INSPIRE].
[276] G. Bozzi, F. Campanario, M. Rauch and D. Zeppenfeld, Zγγ production with leptonic decays and triple photon production at next-to-leading order QCD, Phys. Rev.D 84 (2011) 074028 [arXiv:1107.3149] [INSPIRE].
[277] G. Bozzi, F. Campanario, M. Rauch and D. Zeppenfeld, W+−γγ production with leptonic decays at NLO QCD, Phys. Rev.D 83 (2011) 114035 [arXiv:1103.4613] [INSPIRE].
[278] G. Bozzi, F. Campanario, M. Rauch, H. Rzehak and D. Zeppenfeld, NLO QCD corrections to W±Zγ production with leptonic decays, Phys. Lett.B 696 (2011) 380 [arXiv:1011.2206] [INSPIRE].
[279] G. Bozzi, F. Campanario, V. Hankele and D. Zeppenfeld, NLO QCD corrections to W+W−γ and ZZγ production with leptonic decays, Phys. Rev.D 81 (2010) 094030 [arXiv:0911.0438] [INSPIRE].
[280] F. Campanario, V. Hankele, C. Oleari, S. Prestel and D. Zeppenfeld, QCD corrections to charged triple vector boson production with leptonic decay, Phys. Rev.D 78 (2008) 094012 [arXiv:0809.0790] [INSPIRE].
[281] J.M. Campbell and C. Williams, Triphoton production at hadron colliders, Phys. Rev.D 89 (2014) 113001 [arXiv:1403.2641] [INSPIRE].
[282] M.K. Mandal, P. Mathews, V. Ravindran and S. Seth, Three photon production to NLO + PS accuracy at the LHC, arXiv:1403.2917 [INSPIRE].
[283] A. Lazopoulos, K. Melnikov and F. Petriello, QCD corrections to tri-boson production, Phys. Rev.D 76 (2007) 014001 [hep-ph/0703273] [INSPIRE].
[284] F. Campanario, C. Englert, M. Rauch and D. Zeppenfeld, Precise predictions for Wγγ + jet production at hadron colliders, Phys. Lett.B 704 (2011) 515 [arXiv:1106.4009] [INSPIRE].
[285] S. Hoeche et al., Triple vector boson production through Higgs-Strahlung with NLO multijet merging, Phys. Rev.D 89 (2014) 093015 [arXiv:1403.7516] [INSPIRE].
[286] P. Nason, S. Dawson and R.K. Ellis, The total cross-section for the production of heavy quarks in hadronic collisions, Nucl. Phys.B 303 (1988) 607 [INSPIRE].
[287] W. Beenakker, H. Kuijf, W.L. van Neerven and J. Smith, QCD corrections to heavy quark production in pp collisions, Phys. Rev.D 40 (1989) 54 [INSPIRE].
[288] P. Nason, S. Dawson and R.K. Ellis, The one particle inclusive differential cross-section for heavy quark production in hadronic collisions, Nucl. Phys.B 327 (1989) 49 [Erratum ibid.B 335 (1990) 260] [INSPIRE].
[289] W. Beenakker, W.L. van Neerven, R. Meng, G.A. Schuler and J. Smith, QCD corrections to heavy quark production in hadron hadron collisions, Nucl. Phys.B 351 (1991) 507 [INSPIRE].
[290] M.L. Mangano, P. Nason and G. Ridolfi, Heavy quark correlations in hadron collisions at next-to-leading order, Nucl. Phys.B 373 (1992) 295 [INSPIRE].
[291] S. Frixione, P. Nason and G. Ridolfi, A positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction, JHEP09 (2007) 126 [arXiv:0707.3088] [INSPIRE].
[292] S. Dittmaier, P. Uwer and S. Weinzierl, NLO QCD corrections tott¯\[ t\overline{t} \]+ jet production at hadron colliders, Phys. Rev. Lett.98 (2007) 262002 [hep-ph/0703120] [INSPIRE].
[293] K. Melnikov, A. Scharf and M. Schulze, Top quark pair production in association with a jet: QCD corrections and jet radiation in top quark decays, Phys. Rev.D 85 (2012) 054002 [arXiv:1111.4991] [INSPIRE].
[294] S. Alioli, S.-O. Moch and P. Uwer, Hadronic top-quark pair-production with one jet and parton showering, JHEP01 (2012) 137 [arXiv:1110.5251] [INSPIRE].
[295] G. Bevilacqua, M. Czakon, C.G. Papadopoulos and M. Worek, Dominant QCD backgrounds in Higgs boson analyses at the LHC: a study of pp → tt¯\[ t\overline{t} + 2\] jets at next-to-leading order, Phys. Rev. Lett.104 (2010) 162002 [arXiv:1002.4009] [INSPIRE].
[296] M. Schönherr, S. Höche, J. Huang, G. Luisoni and J. Winter, NLO merging intt¯\[ t\overline{t} \]+ jets, PoS(EPS-HEP 2013)246 [arXiv:1311.3621] [INSPIRE].
[297] S. Hoeche et al., Next-to-leading order QCD predictions for top-quark pair production with up to two jets merged with a parton shower, arXiv:1402.6293 [INSPIRE].
[298] Z. Nagy, Next-to-leading order calculation of three jet observables in hadron hadron collision, Phys. Rev.D 68 (2003) 094002 [hep-ph/0307268] [INSPIRE].
[299] S. Badger, B. Biedermann, P. Uwer and V. Yundin, NLO QCD corrections to multi-jet production at the LHC with a centre-of-mass energy of \[\sqrt{s} \sqrt{s} = 8\] TeV, Phys. Lett.B 718 (2013) 965 [arXiv:1209.0098] [INSPIRE].
[300] S. Badger, B. Biedermann, P. Uwer and V. Yundin, Next-to-leading order QCD corrections to five jet production at the LHC, Phys. Rev.D 89 (2014) 034019 [arXiv:1309.6585] [INSPIRE].
[301] S. Alioli, K. Hamilton, P. Nason, C. Oleari and E. Re, Jet pair production in POWHEG, JHEP04 (2011) 081 [arXiv:1012.3380] [INSPIRE].
[302] A. Kardos, P. Nason and C. Oleari, Three-jet production in POWHEG, JHEP04 (2014) 043 [arXiv:1402.4001] [INSPIRE].
[303] N. Greiner, A. Guffanti, T. Reiter and J. Reuter, NLO QCD corrections to the production of two bottom-antibottom pairs at the LHC, Phys. Rev. Lett.107 (2011) 102002 [arXiv:1105.3624] [INSPIRE].
[304] G. Bevilacqua, M. Czakon, M. Krämer, M. Kubocz and M. Worek, Quantifying quark mass effects at the LHC: a study of pp → bb¯bb¯\[ b\overline{b} b\overline{b} \] + X at next-to-leading order, JHEP07 (2013) 095 [arXiv:1304.6860] [INSPIRE].
[305] G. Bevilacqua, M. Czakon, C.G. Papadopoulos, R. Pittau and M. Worek, Assault on the NLO wishlist: pp → tt¯bb¯\[ t\overline{t} b\overline{b} \], JHEP09 (2009) 109 [arXiv:0907.4723] [INSPIRE].
[306] A. Bredenstein, A. Denner, S. Dittmaier and S. Pozzorini, NLO QCD corrections to pp → tt¯bb¯\[ t\overline{t} b\overline{b} \] + X at the LHC, Phys. Rev. Lett.103 (2009) 012002 [arXiv:0905.0110] [INSPIRE].
[307] A. Bredenstein, A. Denner, S. Dittmaier and S. Pozzorini, NLO QCD corrections to top anti-top bottom anti-bottom production at the LHC: 2. Full hadronic results, JHEP03 (2010) 021 [arXiv:1001.4006] [INSPIRE]. · Zbl 1271.81172
[308] G. Bevilacqua and M. Worek, Constraining BSM physics at the LHC: four top final states with NLO accuracy in perturbative QCD, JHEP07 (2012) 111 [arXiv:1206.3064] [INSPIRE].
[309] R.K. Ellis and S. Veseli, Strong radiative corrections toWbb¯\[ W\ b\overline{b}\] production inpp¯\[ p\overline{p}\] collisions, Phys. Rev.D 60 (1999) 011501 [hep-ph/9810489] [INSPIRE].
[310] S. Badger, J.M. Campbell and R.K. Ellis, QCD corrections to the hadronic production of a heavy quark pair and a W-boson including decay correlations, JHEP03 (2011) 027 [arXiv:1011.6647] [INSPIRE]. · Zbl 1301.81285
[311] R. Frederix et al., W and Z/γ* boson production in association with a bottom-antibottom pair, JHEP09 (2011) 061 [arXiv:1106.6019] [INSPIRE].
[312] C. Oleari and L. Reina, W±bb¯\[ {W}^{\pm } b\overline{b}\] production in POWHEG, JHEP08 (2011) 061 [Erratum ibid.11 (2011) 040] [arXiv:1105.4488] [INSPIRE]. · Zbl 1298.81402
[313] J.M. Campbell and R.K. Ellis, Radiative corrections toZbb¯\[ Zb\overline{b}\] production, Phys. Rev.D 62 (2000) 114012 [hep-ph/0006304] [INSPIRE].
[314] K. Melnikov, M. Schulze and A. Scharf, QCD corrections to top quark pair production in association with a photon at hadron colliders, Phys. Rev.D 83 (2011) 074013 [arXiv:1102.1967] [INSPIRE].
[315] A. Lazopoulos, T. McElmurry, K. Melnikov and F. Petriello, Next-to-leading order QCD corrections tott¯Z \[t\overline{t} Z\] production at the LHC, Phys. Lett.B 666 (2008) 62 [arXiv:0804.2220] [INSPIRE].
[316] M.V. Garzelli, A. Kardos, C.G. Papadopoulos and Z. Trócsányi, tt¯\[W+− t\overline{t}{W}^{+-}\] andtt¯Z \[t\overline{t} Z\] hadroproduction at NLO accuracy in QCD with parton shower and hadronization effects, JHEP11 (2012) 056 [arXiv:1208.2665] [INSPIRE].
[317] J.M. Campbell and R.K. Ellis, tt¯\[W+− t\overline{t}{W}^{+-}\] production and decay at NLO, JHEP07 (2012) 052 [arXiv:1204.5678] [INSPIRE].
[318] T. Stelzer and S. Willenbrock, Single top quark production viaqq¯→tb¯\[ q\overline{q}\to t\overline{b} \], Phys. Lett.B 357 (1995) 125 [hep-ph/9505433] [INSPIRE].
[319] T. Stelzer, Z. Sullivan and S. Willenbrock, Single top quark production via W-gluon fusion at next-to-leading order, Phys. Rev.D 56 (1997) 5919 [hep-ph/9705398] [INSPIRE].
[320] J.M. Campbell, R.K. Ellis and F. Tramontano, Single top production and decay at next-to-leading order, Phys. Rev.D 70 (2004) 094012 [hep-ph/0408158] [INSPIRE].
[321] J.M. Campbell, R. Frederix, F. Maltoni and F. Tramontano, NLO predictions for t-channel production of single top and fourth generation quarks at hadron colliders, JHEP10 (2009) 042 [arXiv:0907.3933] [INSPIRE].
[322] J.M. Campbell, R. Frederix, F. Maltoni and F. Tramontano, Next-to-leading-order predictions for t-channel single-top production at hadron colliders, Phys. Rev. Lett.102 (2009) 182003 [arXiv:0903.0005] [INSPIRE].
[323] J.M. Campbell and F. Tramontano, Next-to-leading order corrections to Wt production and decay, Nucl. Phys.B 726 (2005) 109 [hep-ph/0506289] [INSPIRE]. · Zbl 1113.81317
[324] S. Frixione, E. Laenen, P. Motylinski, B.R. Webber and C.D. White, Single-top hadroproduction in association with a W boson, JHEP07 (2008) 029 [arXiv:0805.3067] [INSPIRE].
[325] S. Alioli, P. Nason, C. Oleari and E. Re, NLO single-top production matched with shower in POWHEG: s- and t-channel contributions, JHEP09 (2009) 111 [Erratum ibid.02 (2010) 011] [arXiv:0907.4076] [INSPIRE]. · Zbl 1290.81155
[326] E. Re, Single-top Wt-channel production matched with parton showers using the POWHEG method, Eur. Phys. J.C 71 (2011) 1547 [arXiv:1009.2450] [INSPIRE].
[327] J. Campbell, R.K. Ellis and R. Rötsch, Single top production in association with a Z boson at the LHC, Phys. Rev.D 87 (2013) 114006 [arXiv:1302.3856] [INSPIRE].
[328] LHC Higgs Cross section Working Group collaboration, S. Dittmaier et al., Handbook of LHC Higgs cross sections: 1. Inclusive observables, arXiv:1101.0593 [INSPIRE].
[329] LHC Higgs Cross section Working Group collaboration, S. Dittmaier et al., Handbook of LHC Higgs cross sections: 2. Differential distributions, arXiv:1201.3084 [INSPIRE].
[330] LHC Higgs Cross section Working Group collaboration, S. Heinemeyer et al., Handbook of LHC Higgs cross sections: 3. Higgs properties, arXiv:1307.1347 [INSPIRE].
[331] J. Baglio et al., The measurement of the Higgs self-coupling at the LHC: theoretical status, JHEP04 (2013) 151 [arXiv:1212.5581] [INSPIRE].
[332] T. Plehn, M. Spira and P.M. Zerwas, Pair production of neutral Higgs particles in gluon-gluon collisions, Nucl. Phys.B 479 (1996) 46 [Erratum ibid.B 531 (1998) 655] [hep-ph/9603205] [INSPIRE].
[333] S. Dawson, S. Dittmaier and M. Spira, Neutral Higgs boson pair production at hadron colliders: QCD corrections, Phys. Rev.D 58 (1998) 115012 [hep-ph/9805244] [INSPIRE].
[334] A. Signer and L.J. Dixon, Electron-positron annihilation into four jets at next-to-leading order in αs, Phys. Rev. Lett.78 (1997) 811 [hep-ph/9609460] [INSPIRE].
[335] A. Signer, Next-to-leading order corrections to e+e− → four jets, hep-ph/9705218 [INSPIRE]. · Zbl 0940.81047
[336] Z. Nagy and Z. Trócsányi, Four jet production in e+e−annihilation at next-to-leading order, Nucl. Phys. Proc. Suppl.64 (1998) 63 [hep-ph/9708344] [INSPIRE].
[337] Z. Nagy and Z. Trócsányi, Next-to-leading order calculation of four jet shape variables, Phys. Rev. Lett.79 (1997) 3604 [hep-ph/9707309] [INSPIRE].
[338] R. Frederix, S. Frixione, K. Melnikov and G. Zanderighi, NLO QCD corrections to five-jet production at LEP and the extraction of αs(MZ), JHEP11 (2010) 050 [arXiv:1008.5313] [INSPIRE].
[339] M.S. Bilenky, G. Rodrigo and A. Santamaria, Three jet production at LEP and the bottom quark mass, Nucl. Phys.B 439 (1995) 505 [hep-ph/9410258] [INSPIRE].
[340] C.R. Schmidt, Top quark production and decay at next-to-leading order in e+e−annihilation, Phys. Rev.D 54 (1996) 3250 [hep-ph/9504434] [INSPIRE].
[341] C. Oleari, Next-to-leading order corrections to the production of heavy flavor jets in e+e−collisions, hep-ph/9802431 [INSPIRE].
[342] P. Nason and C. Oleari, Next-to-leading order corrections to the production of heavy flavor jets in e+e−collisions, Nucl. Phys.B 521 (1998) 237 [hep-ph/9709360] [INSPIRE].
[343] W. Bernreuther, A. Brandenburg and P. Uwer, Next-to-leading order QCD corrections to three jet cross-sections with massive quarks, Phys. Rev. Lett.79 (1997) 189 [hep-ph/9703305] [INSPIRE].
[344] A. Brandenburg and P. Uwer, Next-to-leading order QCD corrections and massive quarks in e + e − → three jets, Nucl. Phys.B 515 (1998) 279 [hep-ph/9708350] [INSPIRE].
[345] A. Brandenburg, The reaction e+e− → tt¯g \[t\overline{t} g\] at next-to-leading order in αs, hep-ph/9908383 [INSPIRE].
[346] S. Dittmaier, M. Krämer, Y. Liao, M. Spira and P.M. Zerwas, Higgs radiation off top quarks in e+e−collisions, Phys. Lett.B 441 (1998) 383 [hep-ph/9808433] [INSPIRE].
[347] S. Frixione, P. Torrielli and M. Zaro, Higgs production through vector-boson fusion at the NLO matched with parton showers, Phys. Lett.B 726 (2013) 273 [arXiv:1304.7927] [INSPIRE].
[348] ATLAS collaboration, Measurement of top-quark pair differential cross-sections in the l + jets channel in pp collisions at \[\sqrt{s} \sqrt{s} = 7\] TeV using the ATLAS detector, ATLAS-CONF-2013-099, CERN, Geneva Switzerland (2013).
[349] CMS collaboration, Measurement of differential top-quark pair production cross sections in pp colisions at \[\sqrt{s} \sqrt{s} = 7\] TeV, Eur. Phys. J.C 73 (2013) 2339 [arXiv:1211.2220] [INSPIRE].
[350] CMS collaboration, Measurement of differential top-quark pair production cross sections in the lepton + jets channel in pp collisions at 8 TeV, CMS-TOP-12-027, CERN, Geneva Switzerland (2012).
[351] CMS collaboration, Measurement of the differentialtt¯\[ t\overline{t}\] cross section in the dilepton channel at 8 TeV, CMS-TOP-12-028, CERN, Geneva Switzerland (2012).
[352] ATLAS collaboration, Measurement oftt¯\[ t\overline{t}\] production with a veto on additional central jet activity in pp collisions at \[\sqrt{s} \sqrt{s} = 7\] TeV using the ATLAS detector, Eur. Phys. J.C 72 (2012) 2043 [arXiv:1203.5015] [INSPIRE].
[353] CMS collaboration, Measurement of jet multiplicity distributions in top quark events with two leptons in the final state at a centre-of-mass energy of 7 TeV, CMS-TOP-12-023, CERN, Geneva Switzerland (2012).
[354] CMS collaboration, Measurement of the jet multiplicity in dileptonic top quark pair events at 8 TeV, CMS-TOP-12-041, CERN, Geneva Switzerland (2012).
[355] S. Dittmaier and M. Kramer, Electroweak radiative corrections to W boson production at hadron colliders, Phys. Rev.D 65 (2002) 073007 [hep-ph/0109062] [INSPIRE].
[356] A. Denner, Techniques for calculation of electroweak radiative corrections at the one loop level and results for W physics at LEP-200, Fortsch. Phys.41 (1993) 307 [arXiv:0709.1075] [INSPIRE].
[357] W. Beenakker et al., NLO QCD corrections tott¯\[H t\overline{t} H\] production in hadron collisions, Nucl. Phys.B 653 (2003) 151 [hep-ph/0211352] [INSPIRE].
[358] T. Binoth, G. Ossola, C.G. Papadopoulos and R. Pittau, NLO QCD corrections to tri-boson production, JHEP06 (2008) 082 [arXiv:0804.0350] [INSPIRE].
[359] T. Melia, K. Melnikov, R. Rontsch and G. Zanderighi, NLO QCD corrections for W+W−pair production in association with two jets at hadron colliders, Phys. Rev.D 83 (2011) 114043 [arXiv:1104.2327] [INSPIRE].
[360] G. Cullen et al., Next-to-leading-order QCD corrections to Higgs boson production plus three jets in gluon fusion, Phys. Rev. Lett.111 (2013) 131801 [arXiv:1307.4737] [INSPIRE].
[361] H. van Deurzen et al., Next-to-leading-order QCD corrections to Higgs boson production in association with a top quark pair and a jet, Phys. Rev. Lett.111 (2013) 171801 [arXiv:1307.8437] [INSPIRE].
[362] A. Kardos and Z. Trócsányi, Hadroproduction of tt pair with a bb pair using PowHel, J. Phys.G 41 (2014) 075005 [arXiv:1303.6291] [INSPIRE].
[363] A. Kardos, Z. Trócsányi and C. Papadopoulos, Top quark pair production in association with a Z-boson at NLO accuracy, Phys. Rev.D 85 (2012) 054015 [arXiv:1111.0610] [INSPIRE].
[364] M.V. Garzelli, A. Kardos, C.G. Papadopoulos and Z. Trócsányi, Z0-boson production in association with a top anti-top pair at NLO accuracy with parton shower effects, Phys. Rev.D 85 (2012) 074022 [arXiv:1111.1444] [INSPIRE].
[365] A. Kardos, C. Papadopoulos and Z. Trócsányi, Top quark pair production in association with a jet with NLO parton showering, Phys. Lett.B 705 (2011) 76 [arXiv:1101.2672] [INSPIRE].
[366] M.R. Whalley, D. Bourilkov and R.C. Group, The Les Houches accord PDFs (LHAPDF) and LHAGLUE, hep-ph/0508110 [INSPIRE].
[367] M. Cacciari, S. Frixione, M.L. Mangano, P. Nason and G. Ridolfi, Updated predictions for the total production cross sections of top and of heavier quark pairs at the Tevatron and at the LHC, JHEP09 (2008) 127 [arXiv:0804.2800] [INSPIRE].
[368] R.D. Ball et al., A first unbiased global NLO determination of parton distributions and their uncertainties, Nucl. Phys.B 838 (2010) 136 [arXiv:1002.4407] [INSPIRE]. · Zbl 1206.81141
[369] D.E. Soper and M. Spannowsky, Finding top quarks with shower deconstruction, Phys. Rev.D 87 (2013) 054012 [arXiv:1211.3140] [INSPIRE].
[370] D.E. Soper and M. Spannowsky, Finding physics signals with event deconstruction, arXiv:1402.1189 [INSPIRE].
[371] A. van Hameren, OneLOop: for the evaluation of one-loop scalar functions, Comput. Phys. Commun.182 (2011) 2427 [arXiv:1007.4716] [INSPIRE]. · Zbl 1262.81253
[372] R.K. Ellis and G. Zanderighi, Scalar one-loop integrals for QCD, JHEP02 (2008) 002 [arXiv:0712.1851] [INSPIRE].
[373] A. Denner and S. Dittmaier, Reduction schemes for one-loop tensor integrals, Nucl. Phys.B 734 (2006) 62 [hep-ph/0509141] [INSPIRE]. · Zbl 1192.81158
[374] O.V. Tarasov, Connection between Feynman integrals having different values of the space-time dimension, Phys. Rev.D 54 (1996) 6479 [hep-th/9606018] [INSPIRE]. · Zbl 0925.81121
[375] G. Duplancic and B. Nizic, Reduction method for dimensionally regulated one loop N point Feynman integrals, Eur. Phys. J.C 35 (2004) 105 [hep-ph/0303184] [INSPIRE]. · Zbl 1191.81116
[376] M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J.C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE]. · Zbl 1393.81007
[377] R. Kleiss, W.J. Stirling and S.D. Ellis, A new Monte Carlo treatment of multiparticle phase space at high-energies, Comput. Phys. Commun.40 (1986) 359 [INSPIRE].
[378] L. Garren and P. Lebrun, StdHEP v5 manual, http://cepa.fnal.gov/psm/stdhep/.
[379] G.P. Lepage, A new algorithm for adaptive multidimensional integration, J. Comput. Phys.27 (1978) 192 [INSPIRE]. · Zbl 0377.65010
[380] G.P. Lepage, VEGAS: an adaptive multidimentional integration program, CLNS-80/447, (1980) [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.