×

Approximation and simulation of infinite-dimensional Lévy processes. (English) Zbl 1402.60054

Summary: In this paper approximation methods for infinite-dimensional Lévy processes, also called (time-dependent) Lévy fields, are introduced. For square integrable fields beyond the Gaussian case, it is no longer given that the one-dimensional distributions in the spectral representation with respect to the covariance operator are independent. When simulated via a Karhunen-Loève expansion a set of dependent but uncorrelated one-dimensional Lévy processes has to be generated. The dependence structure among the one-dimensional processes ensures that the resulting field exhibits the correct point-wise marginal distributions. To approximate the respective (one-dimensional) Lévy-measures, a numerical method, called discrete Fourier inversion, is developed. For this method, \(L^p\)-convergence rates can be obtained and, under certain regularity assumptions, mean square and \(L^p\)-convergence of the approximated field is proved. Further, a class of (time-dependent) Lévy fields is introduced, where the point-wise marginal distributions are dependent but uncorrelated subordinated Wiener processes. For this specific class one may derive point-wise marginal distributions in closed form. Numerical examples, which include hyperbolic and normal-inverse Gaussian fields, demonstrate the efficiency of the approach.

MSC:

60G51 Processes with independent increments; Lévy processes
60G60 Random fields

Software:

DLMF
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Applebaum, D; Riedle, M, Cylindrical Lévy processes in Banach spaces, Proc. Lond. Math. Soc., 101, 697-726, (2010) · Zbl 1210.60012 · doi:10.1112/plms/pdq004
[2] Asmussen, S., Glynn, P.W.: Stochastic Simulation: Algorithms and Analysis, vol. 57. Springer, Berlin (2007) · Zbl 1126.65001
[3] Asmussen, S; Rosiński, J, Approximations of small jumps of Lévy processes with a view towards simulation, J. Appl. Probab., 38, 482-493, (2001) · Zbl 0989.60047 · doi:10.1017/S0021900200019987
[4] Barndorff-Nielsen, OE, Exponentially decreasing distributions for the logarithm of particle size, Proc. R. Soc. Lond. Ser. A Math. Phys. Sci., 353, 401-419, (1977) · doi:10.1098/rspa.1977.0041
[5] Barndorff-Nielsen, OE, Hyperbolic distributions and distributions on hyperbolae, Scand. J. Stat., 5, 151-157, (1978) · Zbl 0386.60018
[6] Barndorff-Nielsen, OE; Halgreen, C, Infinite divisibility of the hyperbolic and generalized inverse Gaussian distributions, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 38, 309-311, (1977) · Zbl 0403.60026 · doi:10.1007/BF00533162
[7] Barndorff-Nielsen, OE; Kent, J; Sørensen, M, Normal variance-mean mixtures and z distributions, Int. Stat. Rev/Rev. Int. Stat., 50, 145-159, (1982) · Zbl 0497.62019 · doi:10.2307/1402598
[8] Barndorff-Nielsen, O.E., Mikosch, T., Resnick, S.I.: Lévy Processes: Theory and Applications. Springer, Berlin (2012) · Zbl 0961.00012
[9] Barth, A; Benth, FE, The forward dynamics in energy markets—infinite-dimensional modelling and simulation, Stoch. Int. J. Probab. Stoch. Process., 86, 932-966, (2014) · Zbl 1337.91086 · doi:10.1080/17442508.2014.895359
[10] Barth, A; Lang, A, Milstein approximation for advection-diffusion equations driven by multiplicative noncontinuous martingale noises, Appl. Math. Optim., 66, 387-413, (2012) · Zbl 1260.60134 · doi:10.1007/s00245-012-9176-y
[11] Barth, A; Lang, A, Simulation of stochastic partial differential equations using finite element methods, Stochastics, 84, 217-231, (2012) · Zbl 1255.60114 · doi:10.1080/17442508.2010.523466
[12] Benth, FE; Krühner, P, Integrability of multivariate subordinated Lévy processes in Hilbert space, Stochastics, 87, 458-476, (2015) · Zbl 1327.60103 · doi:10.1080/17442508.2014.966826
[13] Blæsild, P, The two-dimensional hyperbolic distribution and related distributions, with an application to johannsen’s Bean data, Biometrika, 68, 251-263, (1981) · Zbl 0463.62048 · doi:10.1093/biomet/68.1.251
[14] Blæsild, P., Jensen, J.L.: Multivariate Distributions of Hyperbolic Type, pp. 45-66. Springer, Dordrecht (1981) · Zbl 0481.62045
[15] Brzeźniak, Z; Zabczyk, J, Regularity of Ornstein-Uhlenbeck processes driven by a Lévy white noise, Potential Anal., 32, 153-188, (2010) · Zbl 1187.60048 · doi:10.1007/s11118-009-9149-1
[16] Cherny, A., Shiryaev, A.: Change of Time and Measure for Lévy Processes, Lectures for the Summer School “From Lévy Processes to Semimartingales—Recent Theoretical Developments and Applications to Finance” (2002)
[17] Dunst, T; Hausenblas, E; Prohl, A, Approximate Euler method for parabolic stochastic partial differential equations driven by space-time Lévy noise, SIAM J. Numer. Anal., 50, 2873-2896, (2012) · Zbl 1262.60066 · doi:10.1137/100818297
[18] Eberlein, E; Barndorff-Nielsen, OE (ed.); Mikosch, T (ed.); Resnick, SI (ed.), Application of generalized hyperbolic Lévy motions to finance, 319-336, (2001), Boston · Zbl 0982.60045 · doi:10.1007/978-1-4612-0197-7_14
[19] Eberlein, E; Keller, U, Hyperbolic distributions in finance, Bernoulli, 1, 281-299, (1995) · Zbl 0836.62107 · doi:10.2307/3318481
[20] Ernst, OG; Powell, CE; Silvester, DJ; Ullmann, E, Efficient solvers for a linear stochastic Galerkin mixed formulation of diffusion problems with random data, SIAM J. Sci. Comput., 31, 1424-1447, (2009) · Zbl 1187.35298 · doi:10.1137/070705817
[21] Fournier, N, Simulation and approximation of Lévy-driven stochastic differential equations, ESAIM Probab. Stat., 15, 233-248, (2011) · Zbl 1273.60080 · doi:10.1051/ps/2009017
[22] Gil-Pelaez, J, Note on the inversion theorem, Biometrika, 38, 481-482, (1951) · Zbl 0045.07204 · doi:10.1093/biomet/38.3-4.481
[23] Hoyle, E; Hughston, LP; Macrina, A, Lévy random bridges and the modelling of financial information, Stoch. Process. Appl., 121, 856-884, (2011) · Zbl 1225.60079 · doi:10.1016/j.spa.2010.12.003
[24] Hughett, P, Error bounds for numerical inversion of a probability characteristic function, SIAM J. Numer. Anal., 35, 1368-1392, (1998) · Zbl 0912.65119 · doi:10.1137/S003614299631085X
[25] Johnson, WP, The curious history of faà di bruno’s formula, Am. Math. Mon., 109, 217-234, (2002) · Zbl 1024.01010
[26] Kelker, D, Infinite divisibility and variance mixtures of the normal distribution, Ann. Math. Stat., 42, 802-808, (1971) · Zbl 0234.60009 · doi:10.1214/aoms/1177693436
[27] Kim, K-K; Kim, S, Simulation of tempered stable Lévy bridges and its applications, Oper. Res., 64, 495-509, (2016) · Zbl 1347.60055 · doi:10.1287/opre.2016.1477
[28] Maller, R; Szimayer, A, Finite approximation schemes for Lévy processes, and their application to optimal stopping problems, Stoch. Process. Appl., 117, 1422-1447, (2007) · Zbl 1125.60041 · doi:10.1016/j.spa.2007.01.012
[29] Mansuy, R; Yor, M, Harnesses, Lévy bridges and monsieur jourdain, Stoch. Process. Appl., 115, 329-338, (2005) · Zbl 1070.60041 · doi:10.1016/j.spa.2004.09.001
[30] Masuda, H, On multidimensional Ornstein-Uhlenbeck processes driven by a general Lévy process, Bernoulli, 10, 97-120, (2004) · Zbl 1048.60060 · doi:10.3150/bj/1077544605
[31] Nocedal, J., Wright, S.: Numerical Optimization. Springer, Berlin (2006) · Zbl 1104.65059
[32] Øigård, T.A., Hanssen, A., Hansen, R.E.: The multivariate normal inverse Gaussian distribution: EM-estimation and analysis of synthetic aperture sonar data. In: Signal Processing Conference, 2004 12th European, pp. 1433-1436 (2004)
[33] Olver, F.W.: NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010) · Zbl 1198.00002
[34] Pérez-Abreu, V; Rocha-Arteaga, A, Covariance-parameter Lévy processes in the space of trace class operators, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 08, 33-54, (2005) · Zbl 1067.60052 · doi:10.1142/S0219025705001846
[35] Peszat, S., Zabczyk, J.: Stochastic Partial Differential Equations with Lévy Noise, Volume 113 of Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge (2007)
[36] Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C, vol. 2. Cambridge University Press, Cambridge (1996) · Zbl 0892.65001
[37] Rasmussen, C.E., Williams, C.K.: Gaussian Processes for Machine Learning, vol. 2, p. 4. The MIT Press, Cambridge (2006) · Zbl 1177.68165
[38] Ribeiro, C., Webber, N.: A Monte Carlo Method for the Normal Inverse Gaussian Option Valuation Model Using an Inverse Gaussian Bridge, Preprint. City University (2003)
[39] Rydberg, T.H.: The normal inverse Gaussian Lévy process: simulation and approximation. Commun. Stat. Stoch. Models 13, 887-910 (1997). Heavy tails and highly volatile phenomena · Zbl 0899.60036
[40] Sato, K.: Lévy Processes and Infinite Divisibility. Cambridge University Press, Cambridge (1999) · Zbl 0973.60001
[41] Schoutens, W.: Lévy Processes in Finance: Pricing Financial Derivatives. Wiley, New York (2003) · doi:10.1002/0470870230
[42] Veillette, MS; Taqqu, MS, A technique for computing the PDFs and CDFs of nonnegative infinitely divisible random variables, J. Appl. Probab., 48, 217237, (2011) · Zbl 1210.60023 · doi:10.1239/jap/1300198146
[43] Zhang, D; Kang, Q, Pore scale simulation of solute transport in fractured porous media, Geophys. Res. Lett., 31, l12504, (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.