zbMATH — the first resource for mathematics

Data-driven problems in elasticity. (English) Zbl 1402.35276
The authors consider the case of linear elasticity and look for solutions in the phase space of \(L^2\) strain-stress field pairs. “The Data-Driven problem consists in minimizing the distance between a given material data set and the subspace of compatible strain fields and stress fields in equilibrium”. Furthermore, the relaxation of the geometrically linear two-well problem is studied.

35Q74 PDEs in connection with mechanics of deformable solids
74B10 Linear elasticity with initial stresses
Full Text: DOI
[1] Agarwal, R; Dhar, V, Big data, data science, and analytics: the opportunity and challenge for IS research, Inf. Syst. Res., 25, 443-448, (2014)
[2] Allaire, G.: Shape optimization by the homogenization method, vol. 146. Applied Mathematical SciencesSpringer, New York (2002) · Zbl 0990.35001
[3] Ball, J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63, 337-403 (1976/77)
[4] Ball, JM; James, RD, Fine phase mixtures as minimizers of the energy, Arch. Ration. Mech. Anal., 100, 13-52, (1987) · Zbl 0629.49020
[5] Conti, S; Dolzmann, G, On the theory of relaxation in nonlinear elasticity with constraints on the determinant, Arch. Ration. Mech. Anal., 217, 413-437, (2015) · Zbl 1323.49010
[6] Cherkaev, A.: Variational methods for structural optimization, vol. 140. Applied Mathematical SciencesSpringer, New York (2000) · Zbl 0956.74001
[7] Dacorogna, B.: Weak continuity and weak lower semicontinuity of nonlinear functionals, vol. 922. Lecture Notes in MathematicsSpringer, Berlin (1982) · Zbl 0484.46041
[8] Dacorogna, B.: Direct methods in the calculus of variations, vol. 78. Applied Mathematical SciencesSpringer, Berlin (1989) · Zbl 0703.49001
[9] Dal Maso, G.: An Introduction to \(Γ \)-Convergence. Progress in Nonlinear Differential Equations and Their Applications. Birkhauser, Boston (1993) · Zbl 0816.49001
[10] Francfort, GA; Murat, F, Homogenization and optimal bounds in linear elasticity, Arch. Ration. Mech. Anal., 94, 307-334, (1986) · Zbl 0604.73013
[11] Fonseca, I; Müller, S, \({\cal{A}}\)-quasiconvexity, lower semicontinuity, and Young measures, SIAM J. Math. Anal., 30, 1355-1390, (1999) · Zbl 0940.49014
[12] Girault, V.; Raviart, P.-A.: Finite element approximation of the Navier-Stokes equations, vol. 749. Lecture Notes in MathematicsSpringer, Berlin (1979) · Zbl 0413.65081
[13] Kalidindi, SR; Graef, M, Materials data science: current status and future outlook, Ann. Rev. Mater. Res., 45, 171-193, (2015)
[14] Khachaturyan, AG, Some questions concerning the theory of phase transformations in solids, Sov. Phys. Solid State, 8, 2163-2168, (1967)
[15] Khachaturyan, A.G.: Theory of Structural Transformations in Solids. Wiley, New York (1983)
[16] Kirchdoerfer, T; Ortiz, M, Data-driven computational mechanics, Comput. Methods Appl. Mech. Eng., 304, 81-101, (2016) · Zbl 1425.74503
[17] Kohn, RV, The relaxation of a double-well energy, Contin. Mech. Thermodyn., 3, 193-236, (1991) · Zbl 0825.73029
[18] Khachaturyan, AG; Shatalov, G, Theory of macroscopic periodicity for a phase transition in the solid state, Sov. Phys. JETP, 29, 557-561, (1969)
[19] Kohn, RV; Strang, G, Optimal design and relaxation of variational problems, I. Commun. Pure Appl. Math., 39, 113-137, (1986) · Zbl 0609.49008
[20] Kohn, RV; Strang, G, Optimal design and relaxation of variational problems, II. Commun. Pure Appl. Math., 39, 139-182, (1986) · Zbl 0621.49008
[21] Milton, G.W.: The Theory of Composites. Cambridge University Press, Cambridge (2002) · Zbl 0993.74002
[22] Müller, S., Šverák, V.: Unexpected solutions of first and second order partial differential equations. In: Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998), number Extra Vol. II, pp. 691-702, 1998 · Zbl 0896.35029
[23] Müller, S; Šverák, V, Convex integration for Lipschitz mappings and counterexamples to regularity, Ann. Math., 2, 715-742, (2003) · Zbl 1083.35032
[24] Murat, F., Tartar, L.: Calcul des variations et homogénéisation. In: Bergman, D.J., et al. (eds.) Les méthodes de l’homogénéisation: théorie et applications en physique, pp. 319-370. Eyrolles, 1985. Translated in [25] · Zbl 1083.35032
[25] Murat, F., Tartar, L.: Calculus of variations and homogenization. In: Cherkaev, A., Kohn, R. (eds.) Topics in the Mathematical Modelling of Composite Materials, volume 31 of Progr. Nonlinear Differential Equations Appl., pp. 139-173. Birkhäuser Boston, 1997 · Zbl 0939.35019
[26] Müller, S; Bethuel, F (ed.); etal., Variational models for microstructure and phase transitions, 85-210, (1999), Berlin · Zbl 0968.74050
[27] Murat, F.: Compacité par compensation. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 5, 489-507, 1978 · Zbl 0399.46022
[28] Murat, F.: Compacité par compensation: condition necessaire et suffisante de continuite faible sous une hypothèse de rang constant. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 8, 69-102, 1981 · Zbl 0464.46034
[29] Nesi, V, Bounds on the effective conductivity of two-dimensional composites made of \({n ≧ 3}\) isotropic phases in prescribed volume fraction: the weighted translation method, Proc. R. Soc. Edinb. Sect. A, 125, 1219-1239, (1995) · Zbl 0852.35016
[30] Nesi, V; Milton, GW, Polycrystalline configurations that maximize electrical resistivity, J. Mech. Phys. Solids, 39, 525-542, (1991) · Zbl 0734.73068
[31] Rešetnjak, JG, Stability of conformal mappings in multi-dimensional spaces, Sib. Mat. Ž., 8, 91-114, (1967)
[32] Rešetnjak, JG, Stability theorems for mappings with bounded distortion, Sib. Mat. Ž., 9, 667-684, (1968)
[33] Ren, W; Li, H; Song, G, A one-dimensional strain-rate-dependent constitutive model for superelastic shape memory alloys, Smart Mater. Struct., 16, 191-197, (2007)
[34] Roitburd, AL, The domain structure of crystals formed in the solid phase, Sov. Phys. Solid State, 10, 2870-2876, (1969)
[35] Roitburd, A.L.: Martensitic transformation as a typical phase transformation in solids. In: Solid State Physics, vol. 33, pp. 317-390. Academic Press, New York, 1978
[36] Tartar, L.: Une nouvelle méthode de résolution d’équations aux dérivées partielles non linéaires. In: Journées d’Analyse Non Linéaire (Proc. Conf., Besançon, 1977), volume 665 of Lecture Notes in Math., pp. 228-241. Springer, Berlin, 1978
[37] Tartar, L.: Compensated compactness and applications to partial differential equations. Nonlinear analysis and mechanics: Heriot-Watt Symp., Vol. 4, Edinburgh, : Res. Notes Math . 39, 136-212, 1979 · Zbl 1323.49010
[38] Tartar, L.: The compensated compactness method applied to systems of conservation laws. In: Systems of nonlinear partial differential equations (Oxford, 1982), volume 111 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., pp. 263-285. Reidel, Dordrecht, 1983 · Zbl 0629.49020
[39] Tartar, L.: Estimations fines des coefficients homogénéisés. In: Ennio De Giorgi colloquium (Paris, 1983), volume 125 of Res. Notes in Math., pp. 168-187. Pitman, Boston, 1985
[40] Tartar, L.: Oscillations in nonlinear partial differential equations: compensated compactness and homogenization. In: Nonlinear systems of partial differential equations in applied mathematics, Part 1 (Santa Fe, N.M., 1984), volume 23 of Lectures in Appl. Math., pp. 243-266. Amer. Math. Soc., Providence, RI, 1986 · Zbl 0940.49014
[41] Tartar, L, \(H\)-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations, Proc. R. Soc. Edinb. Sect. A, 115, 193-230, (1990) · Zbl 0774.35008
[42] Tartar, L.: The general theory of homogenization. A personalized introduction, volume 7 of Lecture Notes of the Unione Matematica Italiana. Springer, Berlin; UMI, Bologna, 2009 · Zbl 1188.35004
[43] Temam, R.: Navier-Stokes equations, vol. 2. Studies in Mathematics and its ApplicationsNorth-Holland Publishing Co., Amsterdam-New York, Revised edition (1979) · Zbl 0426.35003
[44] Tonelli, L.: Fondamenti di Calcolo delle Variazioni. Zanichelli, Bologna (1921) · JFM 49.0348.05
[45] Willis, JR, Variational and related methods for the overall properties of composites, Adv. Appl. Mech., 21, 1-78, (1981) · Zbl 0476.73053
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.