zbMATH — the first resource for mathematics

Global regularity of the 2D micropolar fluid flows with zero angular viscosity. (English) Zbl 1402.35220
Summary: We prove the global existence and uniqueness of smooth solutions to the 2D micropolar fluid flows with zero angular viscosity.

35Q35 PDEs in connection with fluid mechanics
76S05 Flows in porous media; filtration; seepage
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
35B65 Smoothness and regularity of solutions to PDEs
76A05 Non-Newtonian fluids
76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
Full Text: DOI
[1] Beale, J.; Kato, T.; Majda, A., Remarks on the breakdown of smooth solutions for the 3-D Euler equations, Comm. math. phys., 94, 61-66, (1984) · Zbl 0573.76029
[2] Bony, J.-M., Calcul symbolique et propagation des singularités pour LES équations aux dérivées partielles non linéaires, Ann. sci. école norm. sup., 14, 209-246, (1981) · Zbl 0495.35024
[3] Boldrini, J.; Rojas-Medar, M.A.; Fernández-Cara, E., Semi-Galerkin approximation and strong solutions to the equations of the nonhomogeneous asymmetric fluids, J. math. pures appl., 82, 1499-1525, (2003) · Zbl 1075.76005
[4] Cao, C.; Wu, J., Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion, (2009)
[5] Chae, D., Global regularity for the 2D Boussinesq equations with partial viscosity terms, Adv. math., 203, 497-513, (2006) · Zbl 1100.35084
[6] Chemin, J.-Y., Perfect incompressible fluids, (1998), Oxford University Press New York
[7] Chen, Z.; Price, W., Decay estimates of linearized micropolar fluid flows in \(\mathbb{R}^3\) space with applications to \(L_3\)-strong solutions, Internat. J. engrg. sci., 44, 859-873, (2006) · Zbl 1213.76012
[8] Conca, C.; Gormaz, R.; Ortega-Torres, E.; Rojas-Medar, M.A., The equations of non-homogeneous asymmetric fluids: an iterative approach, Math. methods appl. sci., 25, 1251-1280, (2002) · Zbl 1014.35079
[9] Constantin, P.; Masmoudi, N., Global well-posedness for a Smoluchowski equation coupled with navier – stokes equations in 2D, Comm. math. phys., 278, 179-191, (2008) · Zbl 1147.35069
[10] Dong, B.; Chen, Z., Asymptotic profiles of solutions to the 2D viscous incompressible micropolar fluid flows, Discrete contin. dyn. syst., 23, 765-784, (2009) · Zbl 1170.35336
[11] Eringen, A.C., Simple microfluids, Internat. J. engrg. sci., 2, 205-217, (1964) · Zbl 0136.45003
[12] Eringen, A.C., Theory of micropolar fluids, J. math. mech., 16, 1-18, (1966) · Zbl 0145.21302
[13] Ferrari, C., On lubrication with structured fluids, Appl. anal., 15, 127-146, (1983) · Zbl 0526.76006
[14] Galdi, G.P.; Rionero, S., A note on the existence and uniqueness of solutions of micropolar fluid equations, Internat. J. engrg. sci., 14, 105-108, (1977) · Zbl 0351.76006
[15] Hou, T.; Li, C., Global well-posedness of the viscous Boussinesq equations, Discrete contin. dyn. syst., 12, 1-12, (2005) · Zbl 1274.76185
[16] Kozono, H.; Taniuchi, Y., Limitting case of the Sobolev inequality in BMO with application to the Euler equations, Comm. math. phys., 214, 191-200, (2000) · Zbl 0985.46015
[17] Ladyzhenskaya, O.A., The mathematical theory of viscous incompressible fluids, (1969), Gorden Brech New York · Zbl 0184.52603
[18] Lin, F.-H.; Zhang, P.; Zhang, Z., On the global existence of smooth solution to the 2-d FENE dumbbell model, Comm. math. phys., 277, 531-553, (2008) · Zbl 1143.82035
[19] Łukaszewicz, G., Micropolar fluids. theory and applications, Model. simul. sci. eng. technol., (1999), Birkhäuser Boston · Zbl 0923.76003
[20] Masmoudi, N.; Zhang, P.; Zhang, Z., Global well-posedness for 2D polymeric fluid models and growth estimate, Phys. D, 237, 1663-1675, (2008) · Zbl 1143.76356
[21] Ortega-Torres, E.; Rojas-Medar, M.A., Magneto-micropolar fluid motion: global existence of strong solutions, Abstr. appl. anal., 4, 109-125, (1999) · Zbl 0976.35055
[22] Popel, S.; Regirer, A.; Usick, P., A continuum model of blood flow, Biorheology, 11, 427-437, (1974)
[23] Rojas-Medar, M.A., Magneto-micropolar fluid motion: existence and uniqueness of strong solution, Math. nachr., 188, 301-319, (1997) · Zbl 0893.76006
[24] Sastry, V.; Das, T., Stability of Couette fow and Dean fow in micropolar fluids, Internat. J. engrg. sci., 23, 1163-1177, (1985) · Zbl 0568.76013
[25] Temam, R., Navier – stokes equations, theory and numerical analysis, (1977), North-Holland Amsterdam, New York · Zbl 0383.35057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.