×

Looking back on inverse scattering theory. (English) Zbl 1402.35090


MSC:

35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
35P25 Scattering theory for PDEs
35R25 Ill-posed problems for PDEs
35R30 Inverse problems for PDEs
35-02 Research exposition (monographs, survey articles) pertaining to partial differential equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] G. Alessandrini and L. Rondi, Determining a sound-soft polyhedral scatterer by a single far-field measurement, Proc. Amer. Math. Soc., 133 (2005), pp. 1685–1691. · Zbl 1061.35160
[2] T. S. Angell, R. E. Kleinman, and G. F. Roach, An inverse transmission problem for the Helmholtz equation, Inverse Problems, 3 (1987), pp. 149–180. · Zbl 0658.35093
[3] T. Arens, Why linear sampling works, Inverse Problems, 20 (2004), pp. 163–173. · Zbl 1055.35131
[4] T. Arens and A. Lechleiter, The linear sampling method revisited, J. Integral Equations Appl., 21 (2009), pp. 179–202. · Zbl 1237.65118
[5] L. Audibert and H. Haddar, A generalized formulation of the linear sampling method with exact characterization of targets in terms of far field measurements, Inverse Problems, 30 (2014), art. 035011. · Zbl 1291.35377
[6] G. Bao, P. Li, J. Lin, and F. Triki, Inverse scattering problems with multi-frequencies, Inverse Problems, 31 (2015), 093001. · Zbl 1332.78019
[7] G. Bao and P. Li, Inverse medium scattering problems for electromagnetic waves, SIAM J. Appl. Math., 65 (2005), pp. 2049–2066, . · Zbl 1114.78006
[8] C. Bellis, M. Bonnet, and F. Cakoni, Acoustic inverse scattering using topological derivative of far-field measurements-based \(L^2\) cost functionals, Inverse Problems, 29 (2013), art. 075012. · Zbl 1282.65138
[9] J. Blöhbaum, Optimisation methods for an inverse problem with time-harmonic electromagnetic waves: An inverse problem in electromagnetic scattering, Inverse Problems, 5 (1989), pp. 463–482. · Zbl 0684.65106
[10] N. N. Bojarski, Three Dimensional Electromagnetic Short Pulse Inverse Scattering, Spec. Proj. Lab. Rep., Syracuse University Research Corporation, Syracuse, NY, 1967.
[11] A. L. Bukhgeim, Recovering a potential from Cauchy data in the two dimensional case, J. Inverse Ill-Posed Problems, 16 (2008), pp. 19–33. · Zbl 1142.30018
[12] M. Burger, A level set method for inverse problems, Inverse Problems, 17 (2001), pp. 1327–1355. · Zbl 0985.35106
[13] F. Cakoni and D. Colton, A uniqueness theorem for an inverse electromagnetic scattering problem in inhomogeneous anisotropic media, Proc. Edinburgh Math. Soc., 46 (2003), pp. 285–299. · Zbl 1051.78013
[14] F. Cakoni, D. Colton, and H. Haddar, Inverse Scattering Theory and Transmission Eigenvalues, SIAM, Philadelphia, 2016, . · Zbl 1366.35001
[15] F. Cakoni, D. Colton, and P. Monk, The Linear Sampling Method in Inverse Electromagnetic Scattering, SIAM, Philadelphia, 2011, . · Zbl 1221.78001
[16] F. Cakoni, D. Gintides, and H. Haddar, The existence of an infinite discrete set of transmission eigenvalues, SIAM J. Math. Anal., 42 (2010), pp. 237–255, . · Zbl 1210.35282
[17] Y. Chen, Inverse scattering via Heisenberg’s uncertainty principle, Inverse Problems, 13 (1997), pp. 253–282. · Zbl 0872.35123
[18] J. Cheng and M. Yamamoto, Uniqueness in an inverse scattering problem within non-trapping polygonal obstacles with at most two incoming waves, Inverse Problems, 19 (2003), pp. 1361–1384. · Zbl 1041.35078
[19] D. Colton and A. Kirsch, Dense sets and far field patterns in acoustic wave propagation, SIAM J. Math. Anal., 15 (1984), pp. 996–1006, . · Zbl 0572.76074
[20] D. Colton, and A. Kirsch, A simple method for solving inverse scattering problems in the resonance region, Inverse Problems, 12 (1996), pp. 383–393. · Zbl 0859.35133
[21] D. Colton, A. Kirsch, and L. Päivärinta, Far-field patterns for acoustic waves in an inhomogeneous medium, SIAM J. Math. Anal., 20 (1989), pp. 1472–1483, . · Zbl 0681.76084
[22] D. Colton and R. Kress, Integral Equation Methods in Scattering Theory, Classics Appl. Math. 72, SIAM, Philadelphia, 2013, . · Zbl 1291.35003
[23] D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 3rd. ed., Springer, New York, 2013. · Zbl 1266.35121
[24] D. Colton and P. Monk, The inverse scattering problem for acoustic waves in an inhomogeneous medium, Quart. J. Mech. Appl. Math., 41 (1988), pp. 97–125. · Zbl 0637.73026
[25] D. Colton and L. Päivärinta, The uniqueness of a solution to an inverse scattering problem for electromagnetic waves, Arch. Rational Mech. Anal., 119 (1992), pp. 59–70. · Zbl 0756.35114
[26] D. Colton, M. Piana, and R. Potthast, A simple method using Morozov’s discrepancy principle for solving inverse scattering problems, Inverse Problems, 13 (1997), pp. 1477–1493. · Zbl 0902.35123
[27] D. Colton and B. D. Sleeman, Uniqueness theorems for the inverse problem of acoustic scattering, IMA J. Appl. Math., 31 (1983), pp. 253–259. · Zbl 0539.76086
[28] O. Dorn and D. Lesselier, Level set methods for inverse scattering—some recent developments, Inverse Problems, 25 (2009), art. 125001. · Zbl 1180.35552
[29] C. Farhat, R. Tezaur, and R. Djellouli, On the solution of three-dimensional inverse obstacle acoustic scattering problems by a regularized Newton method, Inverse Problems, 18 (2002), pp. 1229–1246. · Zbl 1009.35088
[30] G. R. Feijoo, A new method in inverse scattering based on the topological derivative, Inverse Problems, 20 (2004), pp. 1819–1840. · Zbl 1077.78010
[31] D. Gintides, Local uniqueness for the inverse scattering problem in acoustics via the Faber–Krahn inequality, Inverse Problems, 21 (2005), pp. 1195–1205. · Zbl 1090.76065
[32] S. Gutman and M. Klibanov, Iterative method for multidimensional inverse scattering problems at fixed frequencies, Inverse Problems, 10 (1994), pp. 573–599. · Zbl 0805.35153
[33] F. Gylys-Colwel, An inverse problem for the Helmholtz equation, Inverse Problems, 12 (1996), pp. 139–156. · Zbl 0860.35142
[34] H. Haddar and R. Kress, On the Fréchet derivative for obstacle scattering with an impedance boundary condition, SIAM J. Appl. Math., 65 (2004), pp. 194–208, . · Zbl 1084.35103
[35] H. Haddar and P. Monk, The linear sampling method for solving the electromagnetic inverse medium problem, Inverse Problems, 18 (2002), pp. 891–906. · Zbl 1006.35102
[36] P. Hähner, A uniqueness theorem for a transmission problem in inverse electromagnetic scattering, Inverse Problems, 9 (1993), pp. 667–678. · Zbl 0805.35154
[37] P. Hähner, On the uniqueness of the shape of a penetrable anisotropic obstacle, J. Comput. Appl. Math., 116 (2000), pp. 167–180. · Zbl 0978.35098
[38] P. Hähner and T. Hohage, New stability estimates for the inverse acoustic inhomogeneous medium problem and applications, SIAM J. Math. Anal., 33 (2001), pp. 670–685, . · Zbl 0993.35091
[39] H. Harbrecht and T. Hohage, Fast methods for three-dimensional inverse obstacle scattering problems, J. Integral Equations Appl., 19 (2007), pp. 237–260. · Zbl 1138.65100
[40] T. Hohage, Iterative Methods in Inverse Obstacle Scattering: Regularization Theory of Linear and Nonlinear Exponentially Ill-Posed Problems, Dissertation, Johannes Kepler University, Linz, 1999.
[41] T. Hohage, On the numerical solution of a three-dimensional inverse medium scattering problem, Inverse Problems, 17 (2001), pp. 1743–1763. · Zbl 0989.35141
[42] T. Hohage, Fast numerical solution of the electromagnetic medium scattering problem and applications to the inverse problem, J. Comput. Phys., 214 (2006), pp. 224–238. · Zbl 1099.78003
[43] G. Hu, M. Salo, and E. V. Vesalainen, Shape identification in inverse medium scattering problems with a single far-field pattern, SIAM J. Math. Anal., 48 (2016), pp. 152–165, . · Zbl 1334.35427
[44] M. Ikehata, Reconstruction of the shape of an obstacle from the scattering amplitude at a fixed frequency, Inverse Problems, 14 (1998), pp. 949–954. · Zbl 0917.35161
[45] W. A. Imbriale and R. Mittra, The two-dimensional inverse scattering problem, IEEE Trans. Ant. Prop., AP-18 (1970), pp. 633–642.
[46] V. Isakov, On uniqueness in the inverse transmission scattering problem, Comm. Partial Differential Equations, 15 (1990), pp. 1565–1587. · Zbl 0728.35148
[47] O. Ivanyshyn and R. Kress, Nonlinear integral equations in inverse obstacle scattering, in Mathematical Methods in Scattering Theory and Biomedical Engineering, D. I. Fotiadis and C. V. Massalas, eds., World Scientific, Singapore, 2006, pp. 39–50. · Zbl 1127.35078
[48] O. Ivanyshyn and L. Louër, Material derivatives of boundary integral operators in electromagnetism and application to inverse scattering problems, Inverse Problems, 32 (2016), art. 095003. · Zbl 1354.35147
[49] T. Johansson and B. Sleeman, Reconstruction of an acoustically sound-soft obstacle from one incident field and the far field pattern, IMA J. Appl. Math., 72 (2007), pp. 96–112. · Zbl 1121.76059
[50] A. Kirsch, The denseness of the far field patterns for the transmission problem, IMA J. Appl. Math., 37 (1986), pp. 213–225. · Zbl 0652.35104
[51] A. Kirsch, The domain derivative and two applications in inverse scattering, Inverse Problems, 9 (1993), pp. 81–96. · Zbl 0773.35085
[52] A. Kirsch, Characterization of the shape of the scattering obstacle by the spectral data of the far field operator, Inverse Problems, 14 (1998), pp. 1489–1512. · Zbl 0919.35147
[53] A. Kirsch, Factorization of the far field operator for the inhomogeneous medium case and an application to inverse scattering theory, Inverse Problems, 15 (1999), pp. 413–429. · Zbl 0926.35162
[54] A. Kirsch, Remarks on the Born approximation and the factorization method, Appl. Anal., 96 (2017), pp. 70–84. · Zbl 1364.35222
[55] A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems, Oxford University Press, Oxford, 2008. · Zbl 1222.35001
[56] A. Kirsch and R. Kress, On an integral equation of the first kind in inverse acoustic scattering, in Inverse Problems, J. R. Cannon and U. Hornung, eds., Internat. Schriftenreihe Numer. Math. 77, Birkhäuser, Basel, 1986, pp. 93–102. · Zbl 0607.65089
[57] A. Kirsch and R. Kress, Uniqueness in inverse obstacle scattering, Inverse Problems, 9 (1993), pp. 285–299. · Zbl 0787.35119
[58] R. Kleinman and P. van den Berg, A modified gradient method for two dimensional problems in tomography, J. Comput. Appl. Math., 42 (1992), pp. 17–35. · Zbl 0757.65133
[59] R. Kress, Inverse scattering from an open arc, Math. Methods Appl. Sci., 18 (1995), pp. 267–293. · Zbl 0824.35030
[60] R. Kress, Newton’s method for inverse obstacle scattering meets the method of least squares, Inverse Problems, 19 (2003), pp. 91–104. · Zbl 1052.65055
[61] R. Kress and L. Päivärinta, On the far field in obstacle scattering, SIAM J. Appl. Math., 59 (1999), pp. 1413–1426, . · Zbl 0945.35069
[62] R. Kress and W. Rundell, Nonlinear integral equations and the iterative solution for an inverse boundary value problem, Inverse Problems, 21 (2005), pp. 1207–1223. · Zbl 1086.35139
[63] S. Kusiak and J. Sylvester, The scattering support, Comm. Pure Appl. Math., 56 (2003), pp. 1525–1548. · Zbl 1037.35099
[64] E. Lakshtanov and B. Vainberg, Ellipticity in the interior transmission problem in anisotropic media, SIAM J. Math. Anal., 44 (2012), pp. 1165–1174, . · Zbl 1245.35126
[65] E. Lakshtanov and B. Vainberg, Sharp Weyl law for signed counting function of positive interior transmission eigenvalues, SIAM J. Math. Anal., 47 (2015), pp. 3212–3234, . · Zbl 1331.35252
[66] P. D. Lax and R. S. Phillips, Scattering Theory, Academic Press, New York, 1967.
[67] F. Le Louër, On the Fréchet derivative in elastic obstacle scattering, SIAM J. Appl. Math., 72 (2012), pp. 1493–1507, . · Zbl 1259.35154
[68] C. Liu, Inverse obstacle problem: Local uniqueness for rougher obstacles and the identification of a ball, Inverse Problems, 13 (1997), pp. 1063–1069. · Zbl 0889.35121
[69] H. Liu, M. Yamamoto, and J. Zou, Reflection principle for the Maxwell equations and its application to inverse electromagnetic scattering, Inverse Problems, 23 (2007), pp. 2357–2366. · Zbl 1126.35073
[70] H. Liu and J. Zou, Uniqueness in an inverse acoustic obstacle scattering problem for both sound-hard and sound-soft polyhedral scatterers, Inverse Problems, 22 (2006), pp. 515–524. · Zbl 1094.35142
[71] L. Mönch, On the inverse acoustic scattering problem from an open arc: The sound-hard case, Inverse Problems, 13 (1997), pp. 1379–1392. · Zbl 0894.35079
[72] S. Moskow and J. Schotland, Convergence and stability of the inverse Born series for diffuse waves, Inverse Problems, 24 (2008), art. 065004. · Zbl 1157.35122
[73] A. Nachman, Reconstructions from boundary measurements, Ann. of Math. (2), 128 (1988), pp. 531–576. · Zbl 0675.35084
[74] G. Nakamura and R. Potthast, Inverse Modeling, IOP Publishing, Bristol, 2015. · Zbl 1346.65029
[75] F. Natterer and F. Wübbeling, A propagation-backpropagation method for ultrasound tomography, Inverse Problems, 11 (1995), pp. 1225–1232. · Zbl 0839.35146
[76] R. Novikov, Multidimensional inverse spectral problems for the equation \(-Δ ψ + (v (x) - E \, u (x)) \, ψ = 0\), Funct. Anal. Appl., 22 (1988), pp. 263–272. · Zbl 0689.35098
[77] P. Ola, L. Päivärinta, and E. Somersalo, An inverse boundary value problem in electrodynamics, Duke Math. J., 70 (1993), pp. 617–653. · Zbl 0804.35152
[78] S. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., 79 (1988), pp. 12–49. · Zbl 0659.65132
[79] L. Päivärinta and J. Sylvester, Transmission eigenvalues, SIAM J. Math. Anal., 40 (2008), pp. 738–753, . · Zbl 1159.81411
[80] R. Potthast, Fréchet differentiability of boundary integral operators in inverse acoustic scattering, Inverse Problems, 10 (1994), pp. 431–447. · Zbl 0805.35157
[81] R. Potthast, A fast new method to solve inverse scattering problems, Inverse Problems, 12 (1996), pp. 731–742. · Zbl 0870.35126
[82] R. Potthast, Stability estimates and reconstructions in inverse acoustic scattering using singular sources, J. Comput. Appl. Math., 114 (2000), pp. 247–274. · Zbl 0980.76085
[83] R. Potthast, Point-Sources and Multipoles in Inverse Scattering Theory, Chapman & Hall, London, 2001. · Zbl 0985.78016
[84] A. G. Ramm, Recovery of the potential from fixed energy scattering data, Inverse Problems, 4 (1988), pp. 877–886. · Zbl 0632.35075
[85] A. Roger, Newton Kantorovich algorithm applied to an electromagnetic inverse problem, IEEE Trans. Ant. Prop., AP-29 (1981), pp. 232–238. · Zbl 0947.65503
[86] B. P. Rynne and B. D. Sleeman, The interior transmission problem and inverse scattering from inhomogeneous media, SIAM J. Math. Anal., 22 (1991), pp. 1755–1762, . · Zbl 0733.76065
[87] F. Santosa, A level set approach for inverse problems involving obstacles, ESAIM Control Optim. Calculus Variations, 1 (1996), pp. 17–33. · Zbl 0870.49016
[88] P. Serranho, A hybrid method for sound-soft obstacles in 3D, Inverse Problems Imaging, 1 (2007), pp. 691–712. · Zbl 1149.35082
[89] B. D. Sleeman, The inverse problem of acoustic scattering, IMA. J. Appl. Math., 29 (1982), pp. 113–142. · Zbl 0496.76073
[90] J. Sokoł owski and A. Żochowski, On the topological derivative in shape optimization, SIAM J. Control Optim., 37 (1999), pp. 1251–1272, . · Zbl 0940.49026
[91] J. Sylvester, Notions of support for far fields, Inverse Problems, 22 (2006), pp. 1273–1288. · Zbl 1112.35149
[92] J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. of Math. (2), 125 (1987), pp. 153–169. · Zbl 0625.35078
[93] G. Vodev, Parabolic transmission eigenvalue-free regions in the degenerate isotropic case, Asymptotic Anal., 106 (2018), pp. 147–168. · Zbl 1408.35104
[94] G. Vodev, High-frequency approximation of the interior Dirichlet-to-Neumann map and applications to the transmission eigenvalues, Anal. PDE, 11 (2018), pp. 213–236. · Zbl 1386.35303
[95] M. Vögeler, Reconstruction of the three-dimensional refractive index in electromagnetic scattering using a propagation-backpropagation method, Inverse Problems, 19 (2003), pp. 739–753. · Zbl 1160.78308
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.