×

Bifurcations and hyperchaos in magnetoconvection of non-Newtonian fluids. (English) Zbl 1402.34049


MSC:

34C60 Qualitative investigation and simulation of ordinary differential equation models
76W05 Magnetohydrodynamics and electrohydrodynamics
34C23 Bifurcation theory for ordinary differential equations
34C28 Complex behavior and chaotic systems of ordinary differential equations
34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations
34C37 Homoclinic and heteroclinic solutions to ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Arter, W., Nonlinear convection in an imposed horizontal magnetic field, Geophys. Astrophys. Fluid Dyn., 25, 259-292, (1983) · Zbl 0524.76060
[2] Baier, G.; Sahle, S., Hyperchaos and chaotic hierarchy in low-dimensional chemical systems, J. Chem. Phys., 100, 8907-8911, (1994)
[3] Barboza, R., Dynamics of a hyperchaotic Lorenz system, Int. J. Bifurcation and Chaos, 17, 4285-4294, (2007) · Zbl 1143.37309
[4] Boccaletti, S.; Grebogi, C.; Lai, Y.-C.; Mancini, H.; Maza, D., The control of chaos: theory and applications, Phys. Rep., 329, 103-197, (2000)
[5] Bogdanov, R. I., Versal deformations of a singular point of a vector field on the plane in the case of zero eigenvalues, Funct. Anal. Appl., 9, 144-145, (1975) · Zbl 0447.58009
[6] Busse, F. H., Nonlinear interaction of magnetic field and convection, J. Fluid Mech., 71, 193-206, (1975) · Zbl 0312.76070
[7] Cannas, B.; Cincotti, S., Hyperchaotic behaviour of two bi-directionally coupled chua’s circuits, Int. J. Circuit Th. Appl., 30, 625-637, (2002) · Zbl 1024.94522
[8] Chandrasekhar, S., Hydrodynamic and Hydromagnetic Stability, (1961), Oxford University Press, NY
[9] Chen, A.; Lu, J.; Lü, J.; Yu, S., Generating hyperchaotic Lü attractor via state feedback control, Physica A, 364, 103-110, (2006)
[10] Chen, Y. Y.; Chen, S. H., Homoclinic and heteroclinic solutions of cubic strongly nonlinear autonomous oscillators by the hyperbolic perturbation method, Nonlin. Dyn., 58, 417-429, (2009) · Zbl 1183.70045
[11] Chen, Y. Y.; Chen, S. H.; Sze, K. Y., A hyperbolic Lindstedt-Poincaré method for homoclinic motion of a kind of strongly nonlinear autonomous oscillators, Acta Mech. Sin., 25, 721-729, (2009) · Zbl 1269.70031
[12] Chen, S. H.; Chen, Y. Y.; Sze, K. Y., Homoclinic and heteroclinic solutions of cubic strongly nonlinear autonomous oscillators by hyperbolic Lindstedt-Poincaré method, Sci. China Tech. Sci., 53, 692-702, (2010) · Zbl 1200.37016
[13] Chertovskih, R.; Chimanski, E. V.; Rempel, E. L., Route to hyperchaos in Rayleigh-Bénard convection, EPL, 112, 14001, (2015)
[14] Eckmann, J.-P.; Ruelle, D., Ergodic theory of chaos and strange attractors, Rev. Mod. Phys., 57, 617-656, (1985) · Zbl 0989.37516
[15] Gotoda, H.; Takeuchi, R.; Okuno, Y.; Miyano, T., Low-dimensional dynamical system for Rayleigh-Bénard convection subjected to magnetic field, J. Appl. Phys., 113, 124902, (2013)
[16] Guan, Z.-H.; Huang, F.; Guan, W., Chaos-based image encryption algorithm, Phys. Lett. A, 346, 153-157, (2005) · Zbl 1195.94056
[17] Guckenheimer, J.; Holmes, P., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, (1983), Springer-Verlag, NY · Zbl 0515.34001
[18] He, J.; Yu, S.; Lü, J., Constructing higher-dimensional nondegenerate hyperchaotic systems with multiple controllers, Int. J. Bifurcation and Chaos, 27, 1750146, (2017) · Zbl 1373.34071
[19] Kapitaniak, T.; Chua, L. O., Hyperchaotic attractors of unidirectionally-coupled chua’s circuits, Int. J. Bifurcation and Chaos, 4, 477-482, (1994) · Zbl 0813.58037
[20] Kuznetsov, Y. A., Elements of Applied Bifurcation Theory, (2004), Springer-Verlag, NY · Zbl 1082.37002
[21] Layek, G. C., An Introduction to Dynamical Systems and Chaos, (2015), Springer, India · Zbl 1354.34001
[22] Layek, G. C.; Pati, N. C., Bifurcations and chaos in convection taking non-Fourier heat-flux, Phys. Lett. A, 381, 3568-3575, (2017) · Zbl 1375.34064
[23] Layek, G. C.; Pati, N. C., Chaotic thermal convection of couple-stress fluid layer, Nonlin. Dyn., 91, 837-852, (2018) · Zbl 1390.37141
[24] Li, Y.; Tang, W. K. S.; Chen, G., Generating hyperchaos via state feedback control, Int. J. Bifurcation and Chaos, 15, 3367-3375, (2005)
[25] Li, Q.; Yang, X.; Yang, F., Hyperchaos in simple CNN, Int. J. Bifurcation and Chaos, 16, 2453-2457, (2006) · Zbl 1192.37041
[26] Lorenz, E. N., Deterministic nonperiodic flow, J. Atmos. Sci., 20, 130-141, (1963) · Zbl 1417.37129
[27] Macek, W. M.; Strumik, M., Model for hydromagnetic convection in a magnetized fluid, Phys. Rev. E, 82, 027301, (2010)
[28] Macek, W. M.; Strumik, M., Hyperchaotic intermittent convection in a magnetized viscous fluid, Phys. Rev. Lett., 112, 074502, (2014)
[29] Mekheimer, K. S., Effect of the induced magnetic field on peristaltic flow of a couple stress fluid, Phys. Lett. A, 372, 4271-4278, (2008) · Zbl 1221.76231
[30] Ottino, J. M., The Kinematics of Mixing: Stretching, Chaos, and Transport, (1989), Cambridge University Press, Cambridge · Zbl 0721.76015
[31] Owuor, D. L.; Qi, G. Y., Message signal encryption based on qi hyper-chaos system, Commun. Comput. Inform. Sci., 171, 145-155, (2011)
[32] Peng, G.; Jiang, Y., Computation of universal unfolding of the double-zero bifurcation in \(Z_2\)-symmetric systems by a homological method, J. Diff. Eqs. Appl., 19, 1501-1512, (2013) · Zbl 1282.34047
[33] Qi, G.; van Wyk, M. A.; van Wyk, B. J.; Chen, G., A new hyperchaotic system and its circuit implementation, Chaos Solit. Fract., 40, 2544-2549, (2009)
[34] Rössler, O. E., An equation for hyperchaos, Phys. Lett. A, 71, 155-157, (1979) · Zbl 0996.37502
[35] Sparrow, C., The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors, (1982), Springer-Verlag, NY · Zbl 0504.58001
[36] Stokes, V. K., Couple stresses in fluids, Phys. Fluids, 9, 1709-1715, (1966)
[37] Sud, V. K.; Sekhon, G. S.; Mishra, R. K., Pumping action on blood flow by a magnetic field, Bull. Math. Biol., 39, 385-390, (1977)
[38] Takens, F., Singularities of vector fields, Publ. Math. IHES, 43, 47-100, (1974) · Zbl 0279.58009
[39] Udaltsov, V. S.; Goedgebuer, J. P.; Larger, L., Communicating with hyperchaos: the dynamics of a DNLF emitter and recovery of transmitted information, Opt. Spectrosc., 95, 114-118, (2003)
[40] Wang, J.; Chen, G.; Qin, T., Synchronizing spatiotemporal chaos in coupled map lattices via active-passive decomposition, Phys. Rev. E, 58, 3017-3021, (1998)
[41] Weiss, N. O.; Proctor, M. R. E., Magnetoconvection, (2014), Cambridge University Press, Cambridge
[42] Wiggins, S., Introduction to Applied Nonlinear Dynamical Systems and Chaos, (2003), Springer-Verlag, NY · Zbl 1027.37002
[43] Yang, T., A survey of chaotic secure communication systems, Int. J. Comput. Cogn., 2, 81-130, (2004)
[44] Yorke, J. A.; Yorke, E. D., Metastable chaos: the transition to sustained chaotic behavior in the Lorenz model, J. Stat. Phys., 21, 263-277, (1979)
[45] Zhou, L.; Chen, Z.; Wang, J.; Zhang, Q., Local bifurcation analysis and global dynamics estimation of a novel 4-dimensional hyperchaotic system, Int. J. Bifurcation and Chaos, 27, 1750021-1-20, (2017) · Zbl 1362.34070
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.