De-risking strategy: longevity spread buy-in. (English) Zbl 1401.91125

Summary: The paper proposes a demographic de-risking strategy for a pension provider, to deal with the future uncertainty in longevity over a long time horizon. The innovative idea of a longevity spread buy-in is presented. The formulae for calculating the buy-in premium are proposed in the case of pension plans. The proposal directly impacts the pension provider’s risk management systems and hence can be an important part of the overall approach to risk management. The numerical results, developed under specified stochastic hypotheses for the dynamics of the underlying financial and demographic processes, show how the proposal of the paper can be practically implemented.


91B30 Risk theory, insurance (MSC2010)
91D20 Mathematical geography and demography
62P05 Applications of statistics to actuarial sciences and financial mathematics
91G60 Numerical methods (including Monte Carlo methods)
Full Text: DOI


[1] Akaike, H., Information theory and an extension of the maximum likelihood principle, (Petrov, B. N.; Csáki, F., 2nd International Symposium on Information Theory, Tsahkadsor, Armenia, USSR, September 2-8, 1971, (1973), Akadémiai Kiadó Budapest), 267-281
[2] Benchimol, A., Alonso, P.J., Marín, J.M., Albarrán, I., 2016. Model uncertainty approach in mortality projection with model assembling methodologies. UC3M Working papers. Statistics and Econometrics 16-06.
[3] Blake, D. A.; Cairns, A. J.G.; Dowd, K.; MacMinn, R., Longevity bonds: financial engineering, valuation and hedging, J. Risk Insurance, 73, 647-672, (2006)
[4] Booth, H.; Maindonald, J.; Smith, L., Applying Lee-Carter under conditions of variable mortality decline, Popul. Stud., 56, 325-336, (2002)
[5] Cairns, A. J.G.; Blake, D.; Dowd, K., A two-factor model for stochastic mortality with parameter uncertainty: theory and calibration, J. Risk Insurance, 73, 687-718, (2006)
[6] Cairns, A. J.G.; Blake, D.; Dowd, K., Pricing death: frameworks for the valuation and the securitization of mortality risk, Astin Bull., 36, 79-120, (2006) · Zbl 1162.91403
[7] Cairns, A. J.G.; Blake, D.; Dowd, K.; Coughlan, G. D.; Epstein, D.; Ong, A.; Balevich, I., A quantitative comparison of stochastic mortality models using data from england and wales and the united states, N. Am. Actuar. J., 13, 1, 1, (2009)
[8] Canabarro, E., Where do one factor interest rate models fail?, J. Fixed Income, September, 31-52, (1995)
[9] Chen, R. R.; Scott, L., Multi-factor Cox-ingersoll-ross models of the term structure: estimates and tests from a Kalman filter model, J. Real Estate Finance Econ., 27, 2, 143-172, (2003)
[10] Coppola, M.; Di Lorenzo, E.; Orlando, A.; Sibillo, M., Solvency analysis and demographic risk measures, J. Risk Finance, 12, 4, 252-269, (2011)
[11] Cox, J. C.; Ingersoll, J. E.; Ross, S. A., A theory of the term structure of interest rates, Econometrica, 53, 385-407, (1985) · Zbl 1274.91447
[12] Cox, S. H.; Lin, Y.; Tian, R.; Yu, J., Managing capital market and longevity risks in a defined benefit pension plan, J. Risk Insurance, 80, 3, 585-619, (2013)
[13] De Gregorio, A.; Iacus, S. M., Clustering of discretely observed diffusion processes, Comput. Statist. Data Anal., 54, 598-606, (2010) · Zbl 1464.62056
[14] Di Lorenzo, E., Sibillo, M., 2002. Longevity risk: Measurement and application perspectives. In: Proceedings of 2nd Conference in Actuarial Science and Finance on Samos Karlovassi (Grecia). http://www.kpmit.dvgu.ru/library/samos2002/proceedSibillo.pdf.
[15] Gobet, E.; Hoffmann, M.; Reiß, M., Nonparametric estimation of scalar diffusions based on low frequency data, Ann. Statist., 32, 5, 2223-2253, (2004) · Zbl 1056.62091
[16] Grant Thornton, UK LLP, DB pension plan de-risking, 2011. http://www.grant-thornton.co.uk/pdf/DB- pension- plan- derisking- new.pdf.
[17] Hyndman, R. J.; Ullah, S., Robust forecasting of mortality and fertility rates: a functional data approach, Comput. Statist. Data Anal., 51, 4942-4956, (2007) · Zbl 1162.62434
[18] Khalaf-Allah, M.; Haberman, S.; Verrall, R., Measuring the effect of mortality improvements on the cost of annuities, Insurance Math. Econom., 39, 231-249, (2006) · Zbl 1201.91092
[19] Knight, K., Mathematical Statistics, (2000), Chapman & Hall/CRC Press London, Boca Raton, FL · Zbl 0935.62002
[20] LCP, 2012. LCP Pension Buy-Ins and Buy-Outs and Longevity Swaps 2012. www.lcp.uk.com.
[21] Lee, R. D.; Carter, L. R., Modeling and forecasting U.S. mortality, J. Amer. Statist. Assoc., 87, 659-671, (1992) · Zbl 1351.62186
[22] Lin, Y.; MacMinn, R. D.; Tian, R., De-risking defined benefit plans, Insurance Math. Econom., 63, 52-65, (2015) · Zbl 1348.91170
[23] Olivieri, A.; Pitacco, E., Introduction to Insurance Mathematics, Technical and Financial Features of Risk Transfers, (2011), Springer · Zbl 1211.91002
[24] Pitacco, E., Survival models in a dynamic context: a survey, Insurance Math. Econom., 35, 279-298, (2004) · Zbl 1079.91050
[25] Pitacco, E., 2007. Mortality and longevity: a risk management perspective. IAA Life Congress - AFIR, Stockholm 10-13 June 2007 www.actuaries.org/LIFE/Events/Stockholm/Pitacco.pdf.
[26] Remillard, B., Statistical Methods for Financial Engineering, (2013), CRC Press · Zbl 1273.91010
[27] Renshaw, A. E.; Haberman, S., Lee-Carter mortality forecasting with age specific enhancement, Insurance Math. Econom., 33, 255272, (2003) · Zbl 1103.91371
[28] Renshaw, A. E.; Haberman, S., A cohort-based extension to the leecarter model for mortality reduction factors, Insurance Math. Econom., 38, 556-570, (2006) · Zbl 1168.91418
[29] Schwarz, Gideon E., Estimating the dimension of a model, Ann. Statist., 6, 2, 461-464, (1978), MR 468014 · Zbl 0379.62005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.