Pricing \(q\)-forward contracts: an evaluation of estimation window and pricing method under different mortality models. (English) Zbl 1401.91097

Summary: The aim of this paper is to study the impact of various sources of uncertainty on the pricing of a special longevity-based instrument: a \(q\)-forward contract. At the expiry of a \(q\)-forward contract, the realized mortality rate for a given population is exchanged in return for a fixed (mortality) rate that is agreed at the initiation of the contract. Pricing a \(q\)-forward involves determining this fixed rate. In our study, we disentangle three main sources of uncertainty and consider their impact on pricing: model choice for the underlying mortality rate, time-window used for estimation and the pricing method itself.


91B30 Risk theory, insurance (MSC2010)
91G30 Interest rates, asset pricing, etc. (stochastic models)
60G50 Sums of independent random variables; random walks
62P05 Applications of statistics to actuarial sciences and financial mathematics


fpp; forecast; Forecast
Full Text: DOI


[1] Amori, M., Sagoo, P. & Uncu, O. (2012). Longevity risk transfer to institutional investors: a new era. Institutional Investors Journal - Special Issue: Longevity Risk Management2012, 25-32.
[2] Barrieu, P., Bensusan, H., El Karoui, N., Hillairet, C., Loisel, S., Ravanelli, C. & Salhi, Y. (2012). Understanding, modeling and managing longevity risk: key issues and main challenges. Scandinavian Actuarial Journal3, 203-231. · Zbl 1277.91073
[3] Bauer, D., Borger, M. & Russ, J. (2010). On the pricing of longevity-linked securities. Insurance: Mathematics and Economics46, 139-149. · Zbl 1231.91142
[4] Brockwell, P. J. & Davis, R. A. (2009). Time series: theory and methods. New York:Springer. · Zbl 1169.62074
[5] Brouhns, N., Denuit, M. & Van Keilegom, I. (2005). Bootstrapping the Poisson log-bilinear model for mortality forecasting. Scandinavian Actuarial Journal2005, 212-224. · Zbl 1092.91038
[6] Cairns, A. J. G., Blake, D. & Dowd, K. (2006a). A two-factor model for stochastic mortality with parameter uncertainty: Theory and calibration. Journal of Risk and Insurance73, 687-718.
[7] Cairns, A. J. G., Blake, D. & Dowd, K. (2006b). Pricing death: frameworks for the valuation and securitization of mortality risk. Astin Bulletin36, 79-120. · Zbl 1162.91403
[8] Cairns, A. J. G., Blake, D., Dowd, K., Coughlan, G. D., Epstein, D., Ong, A. & Balevich, I. (2009). A quantitative comparison of stochastic mortality models using data from England & Wales and the United States. North American Actuarial Journal13, 1-35.
[9] Carmona, R. (ed.) (2009) Indifference pricing - theory and applications. Princeton: Princeton University Press. · Zbl 1155.91008
[10] Coughlan, G., Epstein, D., Sinha, A. & Honig, P. (2007). q-forwards: derivatives for transferring longevity and mortality risk. London:JP Morgan Pension Advisory Group.
[11] Deprez, O. & Gerber, H. U. (1985). On convex principles of premium calculation. Insurance: Mathematics and Economics4, 179-189. · Zbl 0579.62090
[12] Föllmer, H. & Schied, A. (2002). Stochastic finance - an introduction in discrete time. Berlin: de Gruyter Studies in Mathematics. · Zbl 1125.91053
[13] Hyndman, R. J. & Athanasopoulos, G. (2013). Forecasting: principles and practice. Available online at: http://otexts.org/fpp/ (accessed 11 January 2014).
[14] Hyndman, R. J. & Khandakar, Y. (2008). Automatic time series for forecasting: the forecast package for R. Journal of Statistical Software27, 1-22.
[15] Kremer, E. (1986). On robust premium principles. Insurance: Mathematics and Economics5, 271-274. · Zbl 0609.62135
[16] Lane Clark & Peacock LLP (LCP) (2013). Lcp pension buy-ins, buy-outs and longevity swaps 2013. Available online at: http://www.lcp.uk.com.
[17] Lee, R. D. & Carter, L. R. (1992). Modelling and forecasting U.S. mortality. Journal of the American Statistical Association87, 659-675. · Zbl 1351.62186
[18] Li, J. S.-H. & Luo, A. (2012). Key q-duration: a framework for hedging longevity risk. Astin Bulletin42, 413-452. · Zbl 1277.91089
[19] Loeys, J., Panigirtzoglou, N. & Ribeiro, R. (2007). Longevity: a market in the making. J.P. Morgan’s Global Market Strategy. Available online at: http://www.risklab.de/Dokumente/Aufsaetze/Hafner,Mader
[20] Mikosch, T. (2009). Non-life insurance mathematics - an introduction with the Poisson process. 2nd ed. Heidelberg: Springer. · Zbl 1166.91002
[21] Sweeting, P. (2011). A trend-change extension of the Cairns-Blake-Dowd model. Annals of Actuarial Science5, 143-162.
[22] The Life & Longevity Markets Association (2010). Technical note - q-forward. Available online at: http://www.llma.org/publications.html.
[23] The Life & Longevity Markets Association (2012). Longevity pricing framewrok. Available online at: http://www.llma.org/publications.html.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.