zbMATH — the first resource for mathematics

Three-way group decision making based on multigranulation fuzzy decision-theoretic rough set over two universes. (English) Zbl 1401.68330
Summary: Decision-theoretic rough set provides a new perspective to handle decision-making problems under uncertainty and risk. The three-way decision theory proposed by Yao is based on rough set theory and is a natural extension of the classical two-way decision approach. In this paper, we introduce the idea of decision-theoretic rough set into multigranulation approximation space and explore the rough approximation of a fuzzy decision object under the framework of two universes. We construct a variable precision multigranulation fuzzy decision-theoretic rough set over two universes by using the concept of an arbitrary binary fuzzy relation class between two different universes and the probability measurement of a fuzzy event. Several interesting properties of the proposed model are addressed and the decision rules are also deduced using the concept of three-way decision-making over two universes. Moreover, two special types of optimistic and pessimistic models are given by using different precision parameters. We then present a new approach to multiple criteria group decision making problems, based on variable precision multigranulation fuzzy decision-theoretic rough set over two universes. Meanwhile, we establish a cost-based method for sorting among all alternatives of group decision-making problems. Finally, an example of handling a medical diagnosis problem illustrates this approach.

68T37 Reasoning under uncertainty in the context of artificial intelligence
91B06 Decision theory
Full Text: DOI
[1] Abu-Donia, G., Multi knowledge based rough approximations and applications, Knowl.-Based Syst., 26, 1, 20-29, (2012)
[2] Arrow, K., Social choice and individual values, (1963), Wiley New York
[3] Chen, Y.; Kilgour, D.; Hipel, K., A decision rule aggregation approach to multiple criteria-multiple participant sorting, Group Decis. Negot., 21, 727-745, (2012)
[4] Cabrerizo, F. J.; Herrera-Viedma, E.; Pedrycz, W., A method based on PSO and granular computing of linguistic information to solve group decision making problems defined in heterogeneous contexts, Eur. J. Oper. Res., 230, 624-633, (2013) · Zbl 1317.91020
[5] Dempster, A. P., A generalization of Bayesian inference (with discussion), J. R. Stat. Soc. B, 30, 2, 205-247, (1968) · Zbl 0169.21301
[6] Deng, X. F.; Yao, Y. Y., Decision-theoretic three-way approximations of fuzzy sets, Inf. Sci., 279, 702-715, (2014) · Zbl 1354.03073
[7] Dubois, D.; Prade, H., Rough sets and fuzzy rough sets, Int. J. Gen. Syst., 17, 191-209, (1990) · Zbl 0715.04006
[8] Greco, S.; Matarazzo, B.; Słowiński, R., Rough approximation of a preference relation by dominance relations, Eur. J. Oper. Res., 117, 63-83, (1999) · Zbl 0998.90044
[9] Goudey, R., Do statistical inferences allowing three alternative decision give better feedback for environmentally precautionary decision-making, J. Environ. Manag., 85, 338-344, (2007)
[10] Greco, S.; Slowinski, R.; Yao, Y., Bayesian decision theory for dominance-based rough set approach, (The 2nd Int. Conf. Rough Sets Knowl. Tech., (2007))
[11] Hu, Q. H.; Liu, J. F.; Wu, C. X., Neighborhood rough set based heterogeneous feature subset selection, Inf. Sci., 178, 3577-3594, (2008) · Zbl 1154.68466
[12] Huang, B.; Guo, C.; Zhang, Y.; Li, H.; Zhou, X., Intuitionistic fuzzy multigranulation rough sets, Inf. Sci., 277, 299-320, (2014) · Zbl 1354.03076
[13] Jensen, R.; Shen, Q., Fuzzy-rough sets assisted attribute selection, IEEE Trans. Fuzzy Syst., 15, 1, 73-89, (2007)
[14] Kim, K. J.; Han, I., The extraction of trading rules from stock market data using rough sets, Expert Syst., 18, 194-202, (2001) · Zbl 0981.68520
[15] Liang, D. C.; Liu, D.; Pedrycz, W.; Hu, P., Triangular fuzzy decision-theoretic rough sets, Int. J. Approx. Reason., 54, 8, 1087-1106, (2013) · Zbl 1316.68183
[16] Liang, D. C.; Liu, D., A novel risk decision making based on decision-theoretic rough sets under hesitant fuzzy information, IEEE Trans. Fuzzy Syst., 23, 2, 237-247, (2015)
[17] Liang, D. C.; Liu, D.; Agbodah, K., Three-way group decisions with decision-theoretic rough sets, Inf. Sci., 345, 46-64, (2016)
[18] Liu, D.; Li, T. R.; Liang, D. C., Incorporating logistic regression to decision-theoretic rough sets for classifications, Int. J. Approx. Reason., 55, 197-210, (2014) · Zbl 1316.68185
[19] Liu, D.; Liang, D. C.; Wang, C. C., A novel three-way decision model based on incomplete information system, Knowl.-Based Syst., 91, 32-45, (2016)
[20] Liu, C.; Miao, D.; Qian, J., On multi-granulation covering rough sets, Int. J. Approx. Reason., 55, 6, 1404-1418, (2014) · Zbl 1309.68182
[21] Liu, D.; Yao, Y. Y.; Li, T. R., Three-way investment decisions with decision-theoretic rough sets, Int. J. Comput. Intell. Syst., 4, 1, 66-74, (2011)
[22] Lin, G.; Qian, Y.; Liang, J., NMGRS: neighborhood-based multigranulation rough sets, Int. J. Approx. Reason., 53, 7, 1080-1093, (2012) · Zbl 1264.68176
[23] Lingras, P.; Chen, M.; Miao, D. Q., Rough cluster quality index based on decision theory, IEEE Trans. Knowl. Data Eng., 21, 7, 1014-1026, (2009)
[24] Lingras, P. J.; Yao, Y. Y., Data mining using extensions of the rough set model, J. Am. Soc. Inf. Sci., 49, 415-422, (1998) · Zbl 0923.04007
[25] Lin, G. P.; Liang, J. Y.; Qian, Y. H.; Li, J. J., A fuzzy multigranulation decision-theoretic approach to multi-source fuzzy information systems, Knowl.-Based Syst., 91, 102-113, (2016)
[26] Li, W. T.; Xu, W. H., Double-quantitative decision-theoretic rough set, Inf. Sci., 316, 54-67, (2015) · Zbl 1390.68666
[27] Pawlak, Z., Rough sets, Int. J. Comput. Inf. Sci., 11, 5, 341-356, (1982) · Zbl 0501.68053
[28] Pauker, S. G.; Kassirer, J. P., The threshold approach to clinical decision making, N. Engl. J. Med., 302, 1109-1117, (1980)
[29] Qian, Y.; Liang, J.; Dang, C., Incomplete multigranulation rough set, IEEE Trans. Syst. Man Cybern., 20, 420-431, (2010)
[30] Qian, Y.; Li, S.; Liang, J.; Shi, Z.; Wang, F., Pessimistic rough set based decisions: a multigranulation fusion strategy, Inf. Sci., 264, 196-210, (2014) · Zbl 1335.68270
[31] Qian, Y.; Liang, J.; Yao, Y.; Dang, C., MGRS: a multi-granulation rough set, Inf. Sci., 180, 949-970, (2010) · Zbl 1185.68695
[32] Qian, Y. H.; Zhang, H.; Sang, Y. L.; Liang, J. Y., Multigranulation decision-theoretic rough sets, Int. J. Approx. Reason., 55, 1, 225-237, (2014) · Zbl 1316.68190
[33] Stein, W., Decision making under uncertainty: Is sensitivity analysis of any use?, Oper. Res., 48, 1, 20-25, (2000)
[34] Shafer, G., A mathematical theory of evidence, (1976), Princeton University Press Princeton · Zbl 0359.62002
[35] Sun, B. Z.; Ma, W. M.; Zhao, H. Y., An approach to emergency decision-making based on decision-theoretic rough set over two universes, Soft Comput., 20, 3617-3628, (2016)
[36] Sun, B. Z.; Ma, W.; Chen, X., Fuzzy rough set on probabilistic approximation space over two universes and its application to emergency decision-making, Expert Syst., 32, 4, 507-521, (2015)
[37] Slowinski, R.; Vanderpooten, D., A generalized definition of rough approximations based on similarity, IEEE Trans. Knowl. Data Eng., 12, 2, 331-336, (1990)
[38] Sun, B. Z.; Ma, W. M., On relationship between probabilistic rough set and Bayesian risk decision over two universes, Int. J. Gen. Syst., 41, 3, 225-245, (2012) · Zbl 1281.62038
[39] Sun, B. Z.; Ma, W. M., Multigranulation rough set theory over two universes, J. Intell. Fuzzy Syst., 28, 1251-1269, (2015) · Zbl 1351.03053
[40] Sun, B.; Ma, W.; Liu, Q., An approach to decision making based on intuitionistic fuzzy rough sets over two universes, J. Oper. Res. Soc., 64, 7, 1079-1089, (2013)
[41] Sun, B.; Ma, W., An approach to consensus measurement of linguistic preference relations in multi-attribute group decision making and application, Omega, 51, 83-92, (2015)
[42] Tsumoto, S., Automated extraction of medical expert system rules from clinical databases based on rough set theory, Inf. Sci., 112, 67-84, (1998)
[43] Wu, W.; Zhang, W., Constructive and axiomatic approaches of fuzzy approximation operators, Inf. Sci., 159, 233-254, (2004) · Zbl 1071.68095
[44] Wong, S.; Wang, L.; Yao, Y., On modeling uncertainty with interval structures, Comput. Intell., 11, 406-426, (1993)
[45] Wu, W.; Leung, Y., Theory and applications of granular labeled partitions in multi-scale decision tables, Inf. Sci., 181, 18, 3878-3897, (2011) · Zbl 1242.68258
[46] Xu, W.; Sun, W.; Zhang, X.; Zhang, W., Multiple granulation rough set approach to ordered information systems, Int. J. Gen. Syst., 41, 475-501, (2012) · Zbl 1277.93043
[47] Xu, W.; Wang, Q.; Luo, S., Multi-granulation fuzzy rough sets, J. Intell. Fuzzy Syst., 26, 3, 1323-1340, (2014) · Zbl 1305.03052
[48] Xu, W.; Wang, Q.; Zhang, X., Multi-granulation rough sets based on tolerance relations, Soft Comput., 17, 1241-1252, (2013) · Zbl 1325.03065
[49] Xu, W.; Wang, Q.; Zhang, X., Multi-granulation fuzzy rough sets in a fuzzy tolerance approximation space, Int. J. Gen. Syst., 13, 4, 246-259, (2011)
[50] Xu, W.; Wang, Q.; Zhang, X., A generalized multi-granulation rough set approach, (Lecture Notes in Bioinformatics 1, vol. 6840, (2012)), 681-689
[51] Xu, W.; Sun, W.; Zhang, X., Multiple granulation rough set approach to ordered information systems, Int. J. Gen. Syst., 41, 5, 475-501, (2012) · Zbl 1277.93043
[52] Yan, J. A., Theory of measures, (1998), Science Press Beijing
[53] Yao, Y., Probabilistic rough set approximations, Int. J. Approx. Reason., 49, 2, 255-271, (2008) · Zbl 1191.68702
[54] Yao, Y.; Wong, S.; Wang, L., A non-numeric approach to uncertain reasoning, Int. J. Gen. Syst., 23, 343-359, (1995) · Zbl 0850.68298
[55] Yao, Y. Y., Information granulation and rough set approximation, Int. J. Intell. Syst., 16, 1, 87-104, (2001) · Zbl 0969.68079
[56] Yao, Y. Y., Three-way decisions with probabilistic rough sets, Inf. Sci., 180, 3, 341-353, (2010)
[57] Yao, Y. Y., The superiority of three-way decision in probabilistic rough set models, Inf. Sci., 181, 6, 1080-1096, (2011) · Zbl 1211.68442
[58] Yao, Y. Y., An outline of a theory of three-way decisions, (Yao, J.; Yang, Y.; Slowinski, R.; Greco, S.; Li, H.; Mitra, S.; Polkowski, L., Proceedings of the 8th International RSCTC Conference, LNCS (LNAI), vol. 7413, (2012)), 1-17
[59] Yu, H.; Liu, Z. G.; Wang, G. Y., An automatic method to determine the number of clusters using decision-theoretic rough set, Int. J. Approx. Reason., 55, 142-155, (2014)
[60] Yu, H.; Zhang, C.; Wang, G. Y., A tree-based incremental overlapping clustering method using the three-way decision theory, Knowl.-Based Syst., 91, 189-203, (2016)
[61] Yao, J. T.; Azam, N., Web-based medical decision support systems for three-way medical decision making with game-theoretic rough sets, IEEE Trans. Fuzzy Syst., 23, 1, 3-15, (2015)
[62] Yang, X. P.; Yao, J. T., Modelling multi-agent three-way decisions with decision-theoretic rough sets, Fundam. Inform., 115, 2-3, 157-171, (2012) · Zbl 1248.68505
[63] Yu, J. H.; Xu, W. H., Multigranulation decision-theoretic rough set in ordered information system, Fundam. Inform., 139, 67-89, (2015) · Zbl 1334.68220
[64] Zhang, H. R.; Min, F., Three-way recommender systems based on random forests, Knowl.-Based Syst., 91, 275-286, (2016)
[65] Zhang, J.; Li, T.; Chen, H., Composite rough sets for dynamic data mining, Inf. Sci., 257, 81-100, (2014) · Zbl 1320.68156
[66] Zadeh, L. A., Fuzzy sets, Inf. Control, 8, 338-353, (1965) · Zbl 0139.24606
[67] Zhang, G.; Dong, Y.; Xu, Y.; Li, H., Minimum-cost consensus models under aggregation operators, IEEE Trans. Syst. Man Cybern., 41, 6, 1252-1261, (2011)
[68] Zhang, B.; Dong, Y. Y.; Xu, Y., Multiple attribute consensus rules with minimum adjustments to support consensus reaching, Knowl.-Based Syst., 67, 35-48, (2014)
[69] Zhang, B.; Dong, Y.; Xu, Y., Maximum expert consensus models with linear cost function and aggregation operators, Comput. Ind. Eng., 66, 1, 147-157, (2013)
[70] Zhan, J. M.; Liu, Q.; Dawaz, B. J., A new rough set theory: rough soft hemirings, J. Intell. Fuzzy Syst., 28, 4, 1687-1697, (2015) · Zbl 1353.16050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.