×

zbMATH — the first resource for mathematics

The little engine that could: regularization by denoising (RED). (English) Zbl 1401.62101

MSC:
62H35 Image analysis in multivariate analysis
68U10 Computing methodologies for image processing
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
Software:
DLMRI-Lab
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A. Buades, B. Coll, and J.M. Morel, A non-local algorithm for image denoising, in CVPR, 2005. · Zbl 1108.94004
[2] C. Kervrann and J. Boulanger, Optimal spatial adaptation for patch-based image denoising, IEEE Trans. Image Process., 15 (2006), pp. 2866–2878.
[3] T. Tasdizen, Principal neighborhood dictionaries for nonlocal means image denoising, IEEE Trans. Image Process., 18 (2009), pp. 2649–2660. · Zbl 1371.94366
[4] M. Elad and M. Aharon, Image denoising via sparse and redundant representations over learned dictionaries, IEEE Trans. Image Process., 15 (2006), pp. 3736–3745.
[5] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, Image denoising by sparse 3-D transform-domain collaborative filtering, IEEE Trans. Image Process., 16 (2007), pp. 2080–2095.
[6] H. Takeda, S. Farsiu, and P. Milanfar, Kernel regression for image processing and reconstruction, IEEE Trans. Image Process., 16 (2007), pp. 349–366.
[7] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, Non-local sparse models for image restoration, in ICCV, 2009.
[8] W. Dong, X. Li, L. Zhang, and G. Shi, Sparsity-based image denoising via dictionary learning and structural clustering, in CVPR, 2011.
[9] W. Dong, L. Zhang, G. Shi, and X. Li, Nonlocally centralized sparse representation for image restoration, IEEE Trans. Image Process., 22 (2013), pp. 1620–1630. · Zbl 1373.94104
[10] P. Chatterjee and P. Milanfar, Patch-based near-optimal image denoising, IEEE Trans. Image Process., 21 (2012), pp. 1635–1649. · Zbl 1373.94069
[11] H.C. Burger, C.J. Schuler, and S. Harmeling, Image denoising: Can plain neural networks compete with BM3D?, in CVPR, 2012.
[12] M. Lebrun, M. Colom, A. Buades, and J.-M. Morel, Secrets of image denoising cuisine, Acta Numer., 21 (2012), pp. 475–576. · Zbl 1260.94016
[13] M. Lebrun, A. Buades, and J.-M. Morel, Implementation of the “non-local Bayes” (NL-Bayes) image denoising algorithm, IPOL, 3 (2013), pp. 1–42.
[14] C. Knaus and M. Zwicker, Dual-domain image denoising, in ICIP, 2013. · Zbl 1374.94178
[15] H. Talebi and P. Milanfar, Global image denoising, IEEE Trans. Image Process., 23 (2014), pp. 755–768. · Zbl 1374.94365
[16] S. Gu, L. Zhang, W. Zuo, and X. Feng, Weighted nuclear norm minimization with application to image denoising, in CVPR, 2014.
[17] W. Dong, G. Shi, Y. Ma, and X. Li, Image restoration via simultaneous sparse coding: Where structured sparsity meets Gaussian scale mixture, Int. J. Comput. Vis., 114 (2015), pp. 217–232. · Zbl 1398.94029
[18] N. Pierazzo, M. Rais, J.-M. Morel, and G. Facciolo, DA\textup3D: Fast and data adaptive dual domain denoising, in ICIP, 2015.
[19] P. Milanfar, Symmetrizing smoothing filters, SIAM J. Imaging Sci., 6 (2013), pp. 263–284, . · Zbl 1370.62024
[20] Y. Chen and T. Pock, Trainable Nonlinear Reaction Diffusion: A Flexible Framework for Fast and Effective Image Restoration, preprint, , 2015.
[21] P. Chatterjee and P. Milanfar, Is denoising dead?, IEEE Trans. Image Process., 19 (2010), pp. 895–911. · Zbl 1371.94082
[22] A. Levin and B. Nadler, Natural image denoising: Optimality and inherent bounds, in CVPR, 2011.
[23] A. Levin, B. Nadler, F. Durand, and W.T. Freeman, Patch complexity, finite pixel correlations and optimal denoising, in ECCV, 2012.
[24] M. Protter, M. Elad, H. Takeda, and P. Milanfar, Generalizing the nonlocal-means to superresolution reconstruction, IEEE Trans. Image Process., 18 (2009), pp. 36–51. · Zbl 1371.94300
[25] S. Ravishankar and Y. Bresler, MR image reconstruction from highly undersampled k-space data by dictionary learning, IEEE Trans. Med. Imag., 30 (2011), pp. 1028–1041.
[26] M. Akcakaya, T.A. Basha, B. Goddu, L.A. Goepfert, K.V. Kissinger, V. Tarokh, W.J. Manning, and R. Nezafat, Low-dimensional structure self-learning and thresholding: Regularization beyond compressed sensing for MRI reconstruction, Magn. Reson. Med., 66 (2011), pp. 756–767.
[27] A. Danielyan, V. Katkovnik, and K. Egiazarian, BM3D frames and variational image deblurring, IEEE Trans. Image Process., 21 (2012), pp. 1715–1728. · Zbl 1373.94096
[28] W. Dong, L. Zhang, R. Lukac, and G. Shi, Sparse representation based image interpolation with nonlocal autoregressive modeling, IEEE Trans. Image Process., 22 (2013), pp. 1382–1394. · Zbl 1373.94103
[29] C.A. Metzler, A. Maleki, and R.G. Baraniuk, Optimal recovery from compressive measurements via denoising-based approximate message passing, in SAMPTA, 2015.
[30] S.V. Venkatakrishnan, C.A. Bouman, and B. Wohlberg, Plug-and-play priors for model based reconstruction, in GlobalSIP, 2013.
[31] S.H. Chan, Algorithm-Induced Prior for Image Restoration, preprint, , 2016.
[32] S.H. Chan, X. Wang, and O.A. Elgendy, Plug-and-Play ADMM for Image Restoration: Fixed Point Convergence and Applications, preprint, preprint, , 2016.
[33] S. Sreehari, S.V. Venkatakrishnan, B. Wohlberg, L.F. Drummy, J.P. Simmons, and C.A. Bouman, Plug-and-Play Priors for Bright Field Electron Tomography and Sparse Interpolation, preprint, , 2015.
[34] Y. Dar, A.M. Bruckstein, M. Elad, and R. Giryes, Postprocessing of compressed images via sequential denoising, IEEE Trans. Image Process., 25 (2016), pp. 3044–3058. · Zbl 1408.94122
[35] M.U. Sadiq, J.P. Simmons, and C.A. Bouman, Model based image reconstruction with physics based priors, in ICIP, 2016.
[36] A.M. Teodoro, J.M. Bioucas-Dias, and M.A.T. Figueiredo, Image restoration with locally selected class-adapted models, in ICIP, 2016.
[37] A. Brifman, Y. Romano, and M. Elad, Turning a denoiser into a super-resolver using plug and play priors, in ICIP, 2016.
[38] A.M. Teodoro, J.M. Bioucas-Dias, and M.A.T. Figueiredo, Hyperspectral Sharpening Using Scene-Adapted Gaussian Mixture Priors, preprint, , 2017.
[39] R.L. Lagendijk and J. Biemond, Iterative Identification and Restoration of Images, Springer, 1990. · Zbl 0752.68093
[40] L.I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992), pp. 259–268. · Zbl 0780.49028
[41] S. Mallat, A Wavelet Tour of Signal Processing, Academic Press, 1999.
[42] D. Zoran and Y. Weiss, From learning models of natural image patches to whole image restoration, in CVPR, 2011.
[43] G. Yu, G. Sapiro, and S. Mallat, Solving inverse problems with piecewise linear estimators: From Gaussian mixture models to structured sparsity, IEEE Trans. Image Process., 21 (2012), pp. 2481–2499. · Zbl 1373.94471
[44] A.M. Bruckstein, D.L. Donoho, and M. Elad, From sparse solutions of systems of equations to sparse modeling of signals and images, SIAM Rev., 51 (2009), pp. 34–81, . · Zbl 1178.68619
[45] A. Vedaldi and A. Zisserman, Efficient additive kernels via explicit feature maps, IEEE Trans. Pattern Anal. Mach. Intell., 34 (2012), pp. 480–492.
[46] V. Papyan, Y. Romano, and M. Elad, Convolutional Neural Networks Analyzed via Convolutional Sparse Coding, preprint, , 2016. · Zbl 1434.68444
[47] A. Elmoataz, O. Lezoray, and S. Bougleux, Nonlocal discrete regularization on weighted graphs: A framework for image and manifold processing, IEEE Trans. Image Process., 17 (2008), pp. 1047–1060. · Zbl 1143.94308
[48] A.D. Szlam, M. Maggioni, and R.R. Coifman, Regularization on graphs with function-adapted diffusion processes, J. Mach. Learn. Res., 9 (2008), pp. 1711–1739. · Zbl 1225.68217
[49] S. Bougleux, A. Elmoataz, and M. Melkemi, Local and nonlocal discrete regularization on weighted graphs for image and mesh processing, Int. J. Comput. Vis., 84 (2009), pp. 220–236.
[50] G. Peyré, S. Bougleux, and L.D. Cohen, Non-local regularization of inverse problems, Inverse Probl. Imaging, 5 (2011), pp. 511–530. · Zbl 1223.68116
[51] P. Milanfar, A tour of modern image filtering: New insights and methods, both practical and theoretical, IEEE Signal Process. Mag., 30 (2013), pp. 106–128.
[52] F.G. Meyer and X. Shen, Perturbation of the eigenvectors of the graph Laplacian: Application to image denoising, Appl. Comput. Harmon. Anal., 36 (2014), pp. 326–334. · Zbl 1357.05088
[53] X. Liu, D. Zhai, D. Zhao, G. Zhai, and W. Gao, Progressive image denoising through hybrid graph Laplacian regularization: A unified framework, IEEE Trans. Image Process., 23 (2014), pp. 1491–1503. · Zbl 1374.94227
[54] S.M. Haque, G. Pai, and V.M. Govindu, Symmetric smoothing filters from global consistency constraints, IEEE Trans. Image Process., 24 (2014), pp. 1536–1548. · Zbl 1408.94231
[55] A. Kheradmand and P. Milanfar, A general framework for regularized, similarity-based image restoration, IEEE Trans. Image Process., 23 (2014), pp. 5136–5151. · Zbl 1374.94174
[56] Y. Romano and M. Elad, Boosting of image denoising algorithms, SIAM J. Imaging Sci., 8 (2015), pp. 1187–1219, . · Zbl 1341.94006
[57] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Found. Trends Mach. Learn., 3 (2011), pp. 1–122. · Zbl 1229.90122
[58] M. Afonso, J. Bioucas-Dias, and M.A.T. Figueiredo, Fast image recovery using variable splitting and constrained optimization, IEEE Trans. Image Process., 19 (2010), pp. 2345–2356. · Zbl 1371.94018
[59] M. Afonso, J. Bioucas-Dias, and M.A.T. Figueiredo, An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems, IEEE Trans. Image Process., 20 (2011), pp. 681–695. · Zbl 1372.94004
[60] N. Parikh and S. Boyd, Proximal algorithms, Found. Trends Optim., 1 (2014), pp. 123–231.
[61] Y.C. Pati, R. Rezaiifar, and P.S. Krishnaprasad, Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition, in IEEE Asilomar Conf. Signals, Syst. Comput., 1993, pp. 40–44.
[62] E. Candes and T. Tao, The Dantzig selector: Statistical estimation when p is much larger than n, Ann. Statist., 35 (2007), pp. 2313–2351. · Zbl 1139.62019
[63] Y. Romano and M. Elad, Improving K-SVD denoising by post-processing its method-noise, in ICIP, 2013.
[64] H. Talebi, X. Zhu, and P. Milanfar, How to SAIF-ly boost denoising performance, IEEE Trans. Image Process., 22 (2013), pp. 1470–1485. · Zbl 1373.94397
[65] T.M. Apostol, Calculus, 2nd ed., Vol. 1, Blaisdell, Waltham, MA, 1967.
[66] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004. · Zbl 1058.90049
[67] M. Elad, Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing, 1st ed., Springer, 2010. · Zbl 1211.94001
[68] G.H. Golub and C.F. Van Loan, Matrix Computations, 3rd ed., John Hopkins University Press, Baltimore, 1996. · Zbl 0865.65009
[69] M. Elad, B. Matalon, and M. Zibulevsky, Coordinate and subspace optimization methods for linear least squares with non-quadratic regularization, Appl. Comput. Harmon. Anal., 23 (2007), pp. 346–367. · Zbl 1133.65022
[70] M. Droske and A. Bertozzi, Higher-order feature-preserving geometric regularization, SIAM J. Imaging Sci., 3 (2010), pp. 21–51, . · Zbl 1185.65066
[71] A. Beck and M. Teboulle, Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems, IEEE Trans. Image Process., 18 (2009), pp. 2419–2434. · Zbl 1371.94049
[72] W. Dong, L. Zhang, G. Shi, and X. Wu, Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization, IEEE Trans. Image Process., 20 (2011), pp. 1838–1857. · Zbl 1372.94072
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.