×

zbMATH — the first resource for mathematics

Chaos control in a discrete-time predator-prey model with weak Allee effect. (English) Zbl 1401.37096

MSC:
37N25 Dynamical systems in biology
39A28 Bifurcation theory for difference equations
39A30 Stability theory for difference equations
39A33 Chaotic behavior of solutions of difference equations
39A60 Applications of difference equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] May, R. M., Simple mathematical models with very complicated dynamics, Nature, 261, 459-467, (1976) · Zbl 1369.37088
[2] Hastings, A.; Powell, T., Chaos in three-species food chain, Ecology, 72, 896-903, (1991)
[3] Kang, Y.; Sasmal, S. K.; Bhowmick, A. R.; Chattopadhyay, J., Dynamics of a predator-prey system with prey subject to allee effects and disease, Math. Biosci. Eng., 11, 877-918, (2014) · Zbl 1317.34105
[4] Celik, C.; Duman, O., Allee effect in a discrete-time predator-prey system, Chaos Solitons Fractals, 40, 1956-1962, (2009) · Zbl 1198.34084
[5] Wang, W. X.; Zhang, Y. B.; Liu, C. Z., Analysis of a discrete-time predator-prey system with allee effect, Ecol. Complex., 8, 81-85, (2011)
[6] Rana, S.; Bhowmick, A. R.; Bhattacharya, S., Impact of prey refuge on a discrete time predator-prey system with allee effect, Int. J. Bifurc. Chaos, 24, 1450106, (2014) · Zbl 1301.39013
[7] Kang, Y.; Sasmal, S. K.; Bhowmick, A. R.; Chattopadhyay, J., A host-parasitoid system with predation-driven component allee effects in host population, J. Biol. Dyn., 9, 213-232, (2015)
[8] Cheng, L.; Cao, H., Bifurcation analysis of a discrete-time ratio-dependent predator-prey model with allee effect, Commun. Nonlinear Sci. Numer. Simul., 38, 288-302, (2016)
[9] Jana, D.; Elsayed, E. M., Interplay between strong allee effect, harvesting and hydra effect of a single population discrete-time system, Int. J. Biomath., 9, 1650004, (2016) · Zbl 1339.39003
[10] Sasmal, S. K.; Chattopadhyay, J., An eco-epidemiological system with infected prey and predator subject to the weak allee effect, Math. Biosci., 246, 260-271, (2013) · Zbl 1308.92103
[11] Sasmal, S. K.; Bhowmick, A. R.; Al-Khaled, K.; Bhattacharya, S.; Chattopadhyay, J., Interplay of functional responses and weak allee effect on pest control via viral infection or natural predator: an eco-epidemiological study, Diff. Equ. Dyn. Syst., 24, 21-50, (2016) · Zbl 1332.92062
[12] Tian, B.; Yang, L.; Zhong, S., Global stability of a stochastic predator-prey model with allee effect, Int. J. Biomath., 8, 1550044, (2015) · Zbl 1328.92070
[13] Allee, W. C., Animal Aggregations: A Study in General Sociology, (1931), University of Chicago Press, USA
[14] Courchamp, F.; Berec, L.; Gascoigne, J., Allee Effects in Ecology and Conservation, (2008), Oxford University Press, New York
[15] Ferdy, J. B.; Austerlitz, F.; Moret, J.; Gouyon, P. H.; Godelle, B., Pollinator-induced density dependence in deceptive species, Oikos, 87, 549-560, (1999)
[16] Groom, M. J., Allee effects limit population viability of an annual plant, Am. Nat., 151, 487-496, (1998)
[17] Kuussaari, M.; Saccheri, I.; Camara, M.; Hanski, I., Allee effect and population dynamics in the glanville fritillary butterfly, Oikos, 82, 384-392, (1998)
[18] Stoner, A. W.; Ray-Culp, M., Evidence for allee effects in an over-harvested marine gastropod: density-dependent mating and egg production, Mar. Ecol. Prog. Ser., 202, 297-302, (2000)
[19] Courchamp, F.; Grenfell, B. T.; Clutton-Brock, T. H., Impact of natural enemies on obligately cooperative breeders, Oikos, 91, 311-322, (2000)
[20] Amarasekare, P., Interactions between local dynamics and dispersal: insights from single species models, Theor. Popul. Biol., 53, 44-59, (1998) · Zbl 0894.92029
[21] Drake, J. M., Allee effects and the risk of biological invasion, Risk Anal., 24, 795-802, (2004)
[22] Shi, J.; Shivaji, R., Persistence in reaction diffusion models with weak allee effect, J. Math. Biol., 52, 807-829, (2006) · Zbl 1110.92055
[23] Taylor, C. M.; Hastings, A., Allee effects in biological invasions, Ecol. Lett., 8, 895-908, (2005)
[24] Wang, J.; Shi, J.; Wei, J., Predator-prey system with strong allee effect in prey, J. Math. Biol., 62, 291-331, (2011) · Zbl 1232.92076
[25] Chen, X. W.; Fu, X. L.; Jing, Z. J., Dynamics in a discrete-time predator-prey system with allee effect, Acta Math. Appl. Sin. Engl. Ser., 29, 143-164, (2013) · Zbl 1269.37035
[26] Zhu, H.; Campbell, S. A.; Wolkowicz, G. S. K., Bifurcation analysis of a predator-prey system with nonmonotonic functional response, SIAM J. Appl. Math., 63, 636-682, (2003) · Zbl 1036.34049
[27] Andrews, J. F., A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates, Biotechnol. Bioeng., 10, 707-723, (1968)
[28] Hu, Z.; Teng, Z.; Zhang, L., Stability and bifurcation analysis of a discrete predator-prey model with non-monotonic functional response, Nonlinear Anal., Real World Appl., 12, 2356-2377, (2011) · Zbl 1215.92063
[29] Wang, C.; Li, X., Further investigations into the stability and bifurcation of a discrete predator-prey model, J. Math. Anal. Appl., 422, 920-939, (2015) · Zbl 1310.37045
[30] Cui, Q.; Zhang, Q.; Qiu, Z.; Hu, Z., Complex dynamics of a discrete-time predator-prey system with Holling IV functional response, Chaos Solitons Fractals, 87, 158-171, (2016) · Zbl 1369.92090
[31] Freedman, H. I.; Wolkowicz, G. S. K., Predator-prey systems with group defence: the paradox of enrichment revisited, Bull. Math. Biol., 48, 493-508, (1986) · Zbl 0612.92017
[32] Boukal, D. S.; Berec, L., Single-species models of the allee effect: extinction boundaries, sex ratios and mate encounters, J. Theor. Biol., 218, 375-394, (2002)
[33] McCarthy, M. A., The allee effect, finding mates and theoretical models, Ecol. Model., 103, 99-102, (1997)
[34] Biswas, S.; Sasmal, S. K.; Samanta, S.; Saifuddin, Md.; Pal, N.; Chattopadhyay, J., Optimal harvesting and complex dynamics in a delayed eco-epidemiological model with weak allee effects, Nonlinear Dyn., 87, 1553-1573, (2017) · Zbl 1386.91103
[35] Dai, L., Nonlinear Dynamics of Piecewise Constant Systems and Implementation of Piecewise Constant Arguments, (2008), World Scientific, Singapore · Zbl 1154.70001
[36] Guckenheimer, J.; Holmes, P. J., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, 42, (1983), Springer Science & Business Media · Zbl 0515.34001
[37] Robinson, C., Dynamical Systems: Stability, Symbolic Dynamics, and Chaos, (1999), CRC Press, Boca Raton · Zbl 0914.58021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.