×

Generalized conformable fractional operators. (English) Zbl 1401.26012

Summary: In [J. Comput. Appl. Math. 279, 57–66 (2015; Zbl 1304.26004)], T. Abdeljawad has put an open problem, which is stated as: “Is it hard to fractionalize the conformable fractional calculus, either by iterating the conformable fractional derivative (Grunwald-Letnikov approach) or by iterating the conformable fractional integral of order \(0 < \alpha \leq 1\) (Riemann approach)? Notice that when \(\alpha = 0\) we obtain Hadamard type fractional integrals”. In this article we claim that yes it is possible to iterate the conformable fractional integral of order \(0 < \alpha \leq 1\) (Riemann approach), such that when \(\alpha = 0\) we obtain Hadamard fractional integrals. First of all we prove Cauchy integral formula for repeated conformable fractional integral and proceed to define new generalized conformable fractional integral and derivative operators (left and right sided). We also prove some basic properties which are satisfied by these operators. These operators (integral and derivative) are the generalizations of Katugampola operators, Riemann-Liouville fractional operators, Hadamard fractional operators. We apply our results to a simple function. Also we consider a nonlinear fractional differential equation using this new formulation. We show that this equation is equivalent to a Volterra integral equation and demonstrate the existence and uniqueness of solution to the nonlinear problem. At the end, we give conclusion and point out an open problem.

MSC:

26A33 Fractional derivatives and integrals

Citations:

Zbl 1304.26004
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abdeljawad, T., On conformable fractional calculus, J. Comput. Appl. Math., 279, 57-66, (2015) · Zbl 1304.26004
[2] Miller, K. S.; Ross, B., An introduction to the fractional calculus and fractional differential equations, (1993), John Wiley and Sons New York · Zbl 0789.26002
[3] Atici, F. F.; Eloe, P. W., Initial value problems in discrete fractional calculus, Proc. Amer. Math. Soc., 137, 981-989, (2009) · Zbl 1166.39005
[4] Khalil, R.; Al Horani, M.; Yousef, A.; Sababheh, M., A new definition of fractional derivative, J. Comput. Appl. Math., 264, 65-70, (2014) · Zbl 1297.26013
[5] Kilbas, Samko G.; Marichev, A. A., Fractional integrals and derivatives, theory and applications, (1993), Gordon and Breach Yverdon · Zbl 0818.26003
[6] Gray, H. L.; Zhang, N. F., On a new definition of the fractional difference, Math. Comput, 50, 182, 513-529, (1988)
[7] Abdeljawad, T.; Atici, F., On the definitions of nabla fractional operators, Abstr. Appl. Anal., 2012, (2012), 13 pages · Zbl 1253.39004
[8] Abdeljawad, T., Dual identities in fractional difference calculus within Riemann, Adv. Difference Equ., 36, 2013, (2013)
[9] J.D. Munkhammar, Riemann-Liouville fractional derivatives and the Taylor-Riemann Series, Examensarbete i matematik, 10 poäng Handledare och examinator: Andreas Strömbergsson Juni 2004.; J.D. Munkhammar, Riemann-Liouville fractional derivatives and the Taylor-Riemann Series, Examensarbete i matematik, 10 poäng Handledare och examinator: Andreas Strömbergsson Juni 2004.
[10] Podlubny, I., Fractional differential equations, (1999), Academic Press San Diego CA · Zbl 0918.34010
[11] Riemann, B., Versuch einer allgemeinen auffassung der integration und differentiation. gesammelte mathematische werke und wissenschaftlicher nachlass, teubner, Leipzig, 1876, (1953), Dover New York
[12] Hadamard, J., Essai sur letude des fonctions donnees par leur developpment de tay- lor, J. Pure Appl. Math., 4, 8, 101-186, (1892)
[13] Katugampola, Udita N, New approach to a generalized fractional integral, Appl. Math. Comput., 3, 218, 860-865, (2011) · Zbl 1231.26008
[14] Jalab, Hamid A.; Ibrahim, Rabha W., Denoising algorithm based on generalized fractional integral operator with two parameters, Discrete Dyn. Nat. Soc., (2012), 14 pages · Zbl 1244.94007
[15] Ibrahim, Rabha W.; Ozel, Cenap, On multi-order fractional differential operators in the unit disk, Filomat 30, 1, 73-81, (2016) · Zbl 1488.30079
[16] Katugampola, Udita N., A new approach to generalized fractional derivatives, Bull. Math. Anal. Appl., 4, 1-15, (2014) · Zbl 1317.26008
[17] Oliveira, E. C.D.; Machado, J. A.T., Review of definitions for fractional derivatives and integrals, Math. Probl. Eng., 2014, 1-6, (2014)
[18] Diethelm, K., (The Analysis of Fractional Differential Equations, Lecture Notes in Mathematics, (2010))
[19] Kilbas, A.; Srivastava, M. H.; Trujillo, J. J., Theory and application of fractional differential equations, vol. 204, (2006), North Holland Mathematics Studies
[20] Atangana, A.; Baleanu, D.; Alsaedi, A., New properties of conformable derivative, Open Math., 13, 1-10, (2015) · Zbl 1354.26008
[21] Anderson, D. R.; Ulness, D. J., Newly defined conformable derivatives, Adv. Dyn. Syst. Appl., 58, 109-137, (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.