×

zbMATH — the first resource for mathematics

New classes of complete permutation polynomials. (English) Zbl 1401.05016
Summary: In this paper, we propose several classes of complete permutation polynomials over a finite field based on certain polynomials over its subfields or subsets. In addition, a class of complete permutation trinomials with Niho exponents is studied, and the number of these complete permutation trinomials is also determined.

MSC:
05A05 Permutations, words, matrices
11T06 Polynomials over finite fields
11T55 Arithmetic theory of polynomial rings over finite fields
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Akbary, A.; Ghioca, D.; Wang, Q., On constructing permutations of finite fields, Finite Fields Appl., 17, 51-67, (2011) · Zbl 1281.11102
[2] Bartoli, D.; Giulietti, M.; Quoos, L.; Zini, G., Complete permutation polynomials from exceptional polynomials, J. Number Theory, 176, 46-66, (2017) · Zbl 1364.11150
[3] Bartoli, D.; Giulietti, M.; Zini, G., On monomial complete permutation polynomials, Finite Fields Appl., 41, 132-158, (2016) · Zbl 1372.11107
[4] Bassalygo, L.; Zinoviev, V., Permutation and complete permutation polynomials, Finite Fields Appl., 33, 198-211, (2015) · Zbl 1368.11126
[5] Charpin, P.; Kyureghyan, G. M., Cubic monomial bent functions: a subclass of \(\mathcal{M}\), SIAM J. Discrete Math., 22, 2, 650-665, (2008) · Zbl 1171.11062
[6] Laigle-Chapuy, Y., Permutation polynomials and applications to coding theory, Finite Fields Appl., 13, 1, 58-70, (2007) · Zbl 1107.11048
[7] Li, L.; Wang, S.; Li, C.; Zeng, X., Permutation polynomials \((x^{p^m} - x + \delta)^{s_1} +(x^{p^m} - x + \delta)^{s_2} + x\) over \(\mathbb{F}_{p^n}\), Finite Fields Appl., 51, 31-61, (2018) · Zbl 1385.05006
[8] Lidl, R.; Niederreiter, H., Finite Fields, Encyclopedia of Mathematics and Its Applications, vol. 20, (1997), Cambridge University Press: Cambridge University Press Cambridge
[9] Ma, J.; Zhang, T.; Feng, T.; Ge, G., Some new results on permutation polynomials over finite fields, Des. Codes Cryptogr., 83, 425-443, (2017) · Zbl 1369.11091
[10] Mann, H. B., The construction of orthogonal Latin squares, Ann. Math. Stat., 13, 418-423, (1942) · Zbl 0060.02706
[11] Mullen, G. L.; Niederreiter, H., Dickson polynomials over finite fields and complete mappings, Can. Math. Bull., 30, 1, 19-27, (1987) · Zbl 0576.12020
[12] (Mullen, G. L.; Panario, D., Handbook of Finite Fields, (2013), CRC Press: CRC Press Boca Raton) · Zbl 1319.11001
[13] Muratović-Ribić, A.; Pasalic, E., A note on complete polynomials over finite fields and their applications in cryptography, Finite Fields Appl., 25, 306-315, (2014) · Zbl 1302.11096
[14] Niederreiter, H.; Robinson, K. H., Complete mappings of finite fields, J. Aust. Math. Soc. A, 33, 2, 197-212, (1982) · Zbl 0495.12018
[15] Niho, Y., Multi-Valued Cross-Correlation Functions Between Two Maximal Linear Recursive Sequences, (1972), University of Southern California: University of Southern California Los Angeles, PhD dissertation
[16] Park, Y. H.; Lee, J. B., Permutation polynomials and group permutation polynomials, Bull. Aust. Math. Soc., 63, 67-74, (2001) · Zbl 0981.11039
[17] Sarkar, S.; Bhattacharya, S.; Cesmelioglu, A., On some permutation binomials of the form \(x^{\frac{2^n - 1}{k} + 1} + a x\) over \(\mathbb{F}_{2^n}\): existence and count, (Lect. Notes Comput. Sci., WAIFI, 2012, vol. 7369, (2012), Springer), 236-246 · Zbl 1292.11132
[18] Tu, Z.; Zeng, X.; Hu, L., Several classes of complete permutation polynomials, Finite Fields Appl., 25, 182-193, (2014) · Zbl 1284.05012
[19] Tu, Z.; Zeng, X.; Li, C.; Helleseth, T., A class of new permutation trinomials, Finite Fields Appl., 50, 178-195, (2018) · Zbl 1380.05002
[20] Winterhof, A., Generalizations of complete mappings of finite fields and some applications, J. Symb. Comput., 64, 42-52, (2014) · Zbl 1332.11107
[21] Wu, B.; Lin, D., On constructing complete permutation polynomials over finite fields of even characteristic, Discrete Appl. Math., 184, 213-222, (2015) · Zbl 1311.05009
[22] Wu, D.; Yuan, P.; Ding, C.; Ma, Y., Permutation trinomials over \(\mathbb{F}_{2^m}\), Finite Fields Appl., 46, 38-56, (2017) · Zbl 1431.11131
[23] Wu, G.; Li, N.; Helleseth, T.; Zhang, Y., Some classes of monomial complete permutation polynomials over finite fields of characteristic two, Finite Fields Appl., 28, 148-165, (2014) · Zbl 1314.11073
[24] Wu, G.; Li, N.; Helleseth, T.; Zhang, Y., Some classes of complete permutation polynomials over \(\mathbb{F}_q\), Sci. China Math., 58, 2081-2094, (2015) · Zbl 1325.05013
[25] Xu, G.; Cao, X., Complete permutation polynomials over finite fields of odd characteristic, Finite Fields Appl., 31, 228-240, (2015) · Zbl 1320.11121
[26] Xu, X.; Li, C.; Zeng, X.; Helleseth, T., Constructions of complete permutation polynomials, Des. Codes Cryptogr., (2018) · Zbl 1398.05012
[27] Yuan, Y.; Tong, Y.; Zhang, H., Complete mapping polynomials over finite field \(\mathbb{F}_{16}\), (Arithmetic of Finite Fields, Lect. Notes Comput. Sci., vol. 4547, (2007), Springer: Springer Berlin), 147-158 · Zbl 1213.11193
[28] Zha, Z.; Hu, L.; Cao, X., Constructing permutations and complete permutations over finite fields via subfield-valued polynomials, Finite Fields Appl., 31, 162-177, (2015) · Zbl 1320.11123
[29] Zieve, M., On some permutation polynomials over \(\mathbb{F}_q\) of the form \(x^r h(x^{\frac{q - 1}{d}})\), Proc. Am. Math. Soc., 137, 2209-2216, (2009) · Zbl 1228.11177
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.