×

Deconvolution and denoising for confocal microscopy. (English) Zbl 1400.92308

Cazals, Frédéric (ed.) et al., Modeling in computational biology and biomedicine. A multidisciplinary endeavor. Forewords by Olivier Faugeras and Joél Janin. Berlin: Springer (ISBN 978-3-642-31207-6/hbk; 978-3-642-31208-3/ebook). 117-163 (2013).
Summary: Fluorescence light microscopes, especially the confocal laser scanning microscopes, have become a powerful tool in life sciences for observing biological samples in order to detect the distribution of proteins or other molecules of interest. Using this tool, biologists can study cells and their sub-cellular structures, identify, and precisely localize cellular organelles and supra-molecular structures. The confocal microscope is a type of fluorescent light microscope that gives very good two-dimensional optical sections of three-dimensional specimens, rejects the background auto-fluorescence, and offers a good contrast. However, there are some inherent limitations in confocal images such as the blurring effects due to the diffraction limit of the optics, and the low signal levels. The aim of this chapter is to introduce the reader to the basics of the light and confocal microscopes, their imaging limitations, and the mathematics involved in the resolution and signal-to-noise ratio improvement methodologies. Although user-friendly restoration software packages are available in the market, image restoration by deconvolution remains a difficult task for many microscopist and choosing the right software is often a case of trial and error due to a lack of knowledge of the applied algorithm. It is with the objective of resolving this issue that the most recent developments are intuitively explained, with some concrete examples to explain the underlying principles. The current open problems in the field of microscopy and methodological challenges are mentioned towards the end of the chapter.
For the entire collection see [Zbl 1255.92001].

MSC:

92C55 Biomedical imaging and signal processing
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory

Software:

Deconv
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] D.A. Agard. Optical sectioning microscopy: cellular architecture in three dimensions. \(Ann. Rev. Biophys. Bioeng.\), 13:191-219, 1984.
[2] D.A. Agard, Y. Hiraoka, P. Shaw, and J.W. Sedat. Fluorescence microscopy in three dimensions. \(Methods Cell Biol.\), 30:353-377, 1989.
[3] G. Aubert and P. Kornprobst. \(Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations\), volume 147 of \(Applied Mathematical Sciences\). Springer Verlag, 2006. · Zbl 1110.35001
[4] M.R. Banham and A.K. Katsaggelos. Digital image restoration. \(IEEE Sig. Proc. Mag.\), 14(2):24-41, March 1997.
[5] J.M. Bardsley and J.J. Goldes. Regularization parameter selection methods for ill-posed poisson maximum likelihood estimation. \(Inverse Problems\), 25(9):095005, 2009. · Zbl 1176.68225
[6] A. Beck and M. Teboulle. A fast iterative shrinkage thresholding algorithm for linear inverse problems. \(SIAM J. Imaging Sciences\), 2(1):183-202, 2009. · Zbl 1175.94009
[7] D.S.C. Biggs and M. Andrews. Acceleration of iterative image restoration algorithms. \(Appl. Opt.\), 36(8):1766-1775, 1997.
[8] M.J. Booth. Adaptive optics in microscopy. \(Philos. Transact. A Math. Phys. Eng. Sci.\), 365(1861):2829-2843, December 2007.
[9] M.J. Booth, M.A. Neil, R. Juskaitis, and T. Wilson. Adaptive aberration correction in a confocal microscope. \(Proc. Natl. Acad. Sci.\), 99(9):5788-5792, 2002.
[10] M. Born and E. Wolf. \(Principles of Optics\). Cambridge U. Press, 1999.
[11] A.C. Bovik, editor. \(Handbook of image and video processing\). Elsevier Academic Press, Amsterdam [u.a.], 2005.
[12] L.M. Bregman. The method of successive projection for finding a common point of convex sets (Theorems for determining common point of convex sets by method of successive projection). \(Soviet Mathematics\), 6:688-692, 1965. · Zbl 0142.16804
[13] P. Campisi and K. Egiazarian, editors. \(Blind Image Deconvolution: Theory and Applications\). CRC Press, 2007. · Zbl 1160.68668
[14] M.B. Cannell, A. McMorland, and C. Soeller. Image enhancement by deconvolution. In J. B. Pawley, editor, \(Handbook of Biological Confocal Microscopy\), chapter 25, pages 488-500. Springer, 3\^{}{rd} edition, 2006.
[15] W.A. Carrington, K.E. Fogarty, and F.S. Fay. 3D Fluorescence Imaging of Single Cells Using Image Restoration. In J. K. Foskett and S. Grinstein, editors, \(Noninvasive techniques in cell biology\), pages 53-72. Wiley-Liss, 1990.
[16] T.F. Chan and J. Shen. \(Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic Methods\). SIAM Publisher, 2005. · Zbl 1095.68127
[17] P. Charbonnier, L. Blanc-Féraud, and M. Barlaud. An adaptive reconstruction method involving discontinuities. In \(IEEE Int. Conf. Acoust. Speech Signal Process.\), volume 5, pages 491-494, Minneapolis, MN, USA, April 1993.
[18] C. Chaux, L. Blanc-Féraud, and J. Zerubia. Wavelet-based restoration methods: application to 3D confocal microscopy images. In \(Proc. SPIE\), volume 6701, San Diego, USA, August 2007.
[19] C. Chaux, J.-C. Pesquet, and N. Pustelnik. Nested iterative algorithms for convex constrained image recovery problems. \(SIAM Journal on Imaging Sciences\), 2(2):730-762, 2009. · Zbl 1186.68520
[20] P.-C. Cheng, B.-L. Lin, F.-J. Kao, M. Gu, M.-G. Xu, X. Gan, M.-K. Huang, and Y.-S. Wang. Multi-photon fluorescence microscopy - The response of plant cells to high intensity illumination. \(Micron\), 32:661-670, 2001.
[21] J.-A. Conchello and J.W. Lichtman. Optical Sectioning Microscopy. \(Nature Methods\), 2(12):920-931, 2005.
[22] J. Boutet de Monvel, S. Le Calvez, and M. Ulfendahl. Image restoration for confocal microscopy: improving the limits of deconvolution, with application to the visualization of the mammalian hearing organ. \(Biophys. J.\), 80(5):2455-2470, 2001.
[23] N. Dey, L. Blanc-Féraud, C. Zimmer, Z. Kam, P. Roux, J.-C. Olivo-Marin, and J. Zerubia. Richardson-Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution. \(Microsc. Res. Tech.\), 69:260-266, 2006.
[24] N. Dey, L. Blanc-Féraud, C. Zimmer, P. Roux, Z. Kam, J.-C. Olivo-Marin, and J. Zerubia. 3D microscopy deconvolution using richardson-lucy algorithm with total variation regularization. Research Report 5272, Inria, France, July 2004.
[25] A. Diaspro, G. Chirico, C. Usai, P. Romoino, and J. Dobrucki. Photobleaching. In J. B. Pawley, editor, \(Handbook of Biological Confocal Microscopy\), chapter 39, pages 690-702. Springer, 3\^{}{rd} edition, 2006.
[26] F. Difato, F. Mazzone, S. Scaglione, M. Fato, F. Beltrame, L. Kubínová, J. Janácek, P. Ramoino, G. Vicidomini, and A. Diaspro. Improvement in volume estimation from confocal sections after image deconvolution. \(Microscopy Research and Technique\), 64(2):151-155, 2004.
[27] F.-X. Dupé, M.J. Fadili, and J.-L. Starck. A proximal iteration for deconvolving Poisson noisy images using sparse representations. \(IEEE Trans. Image Proc.\), 18(2):310-321, 2009. · Zbl 1371.94117
[28] A. Egner, M. Schrader, and S.W. Hell. Refractive index mismatch induced intensity and phase variations in fluorescence confocal, multiphoton and 4Pi-microscopy. \(Opt. Comm.\), 153:211-217, August 1998.
[29] A. Erhardt, G. Zinser, D. Komitowski, and J. Bille. Reconstructing 3-D light-microscopic images by digital image processing. \(Appl. Opt.\), 24:194-200, 1985.
[30] M. Figueiredo and J. Bioucas-Dias. Restoration of Poissonian images using alternating direction optimization. \(IEEE Transactions on Image Processing\), 19(12):3133-3145, 2010. · Zbl 1371.94128
[31] M.A.T. Figueiredo and R.D. Nowak. An EM algorithm for wavelet-based image restoration. \(IEEE Trans. Image Process.\), 12(8):906-916, August 2003. · Zbl 1279.94015
[32] J.W. Goodman. \(Introduction to Fourier Optics\). Roberts & Company Publishers, 2004.
[33] B.M. Hanser, M.G. Gustafsson, D.A. Agard, and J.W. Sedat. Phase retrieval for high-numerical-aperture optical systems. \(Opt. Lett.\), 28(10):801-803, May 2003.
[34] S.W. Hell. Far-field optical nanoscopy. \(Single Molecule Spectroscopy in Chemistry, Physics and Biology\), 96(7):365-398, 2009.
[35] Y. Hiraoka, J.W. Sedat, and D.A. Agard. Determination of three-dimensional imaging properties of a light microscope system. \(Biophys. J.\), 57:325-333, February 1990.
[36] T.J. Holmes. Maximum-likelihood image restoration adapted for noncoherent optical imaging. \(J. Opt. Soc. Am. A\), 5:666-673, May 1988.
[37] S. Inoué. Foundations of Confocal Scanned Imaging in Light Microscopy. In J. B. Pawley, editor, \(Handbook of Biological Confocal Microscopy\), chapter 1, pages 1-19. Springer, 3\^{}{rd} edition, 2006.
[38] Z. Kam, B. Hanser, M.G.L. Gustafsson, D.A. Agard, and J.W. Sedat. Computational adaptive optics for live three-dimensional biological imaging. \(Proc. Natl. Acad. Sci.\), 98(7):3790-3795, 2001.
[39] Z. Kam, P. Kner, D. Agard, and J.W. Sedat. Modelling the application of adaptive optics to wide-field microscope live imaging. \(J. Microsc.\), 226:33-42, 2007.
[40] X. Lai, Z. Lin, E.S. Ward, and R.J. Ober. Noise suppression of point spread functions and its influence on deconvolution of three-dimensional fluorescence microscopy image sets. \(J. Microsc.\), 217(1):93-108, 2005.
[41] L. Landmann and P. Marbet. Colocalization analysis yields superior results after image restoration. \(Microscopy Research and Technique\), 64(2):103-112, 2004.
[42] A. Levin, Y. Weiss, F. Durand, and W.T. Freeman. Understanding and evaluating blind deconvolution algorithms. In \(Proc. IEEE Comp. Vis. and Pat. Recog.\), Miami, FL, USA, June 2009. to appear.
[43] J.W. Lichtman and J.-A. Conchello. Fluorescence Microscopy. \(Nature Methods\), 2(12):910-919, 2005.
[44] L.B. Lucy. An iterative technique for the rectification of observed distributions. \(Astron. J.\), 79:745-754, 1974.
[45] J.G. McNally, T. Karpova, J. Cooper, and J.A. Conchello. Three-Dimensional Imaging by Deconvolution Microscopy. \(Methods\), 19:373-385, 1999.
[46] J.G. McNally, C. Preza, J.Á. Conchello, and L.J. Thomas Jr. Artifacts in computational optical-sectioning microscopy. \(J. Opt. Soc. Am. A\), 11:1056-1067, March 1994.
[47] E.S. Meinel. Origins of linear and nonlinear recursive restoration algorithms. \(J. Opt. Soc. Am. A\), 3(6):787-799, 1986.
[48] K. Miller. Least squares methods for ill-posed problems with a prescribed bound. \(SIAM J. Math. Anal.\), 1(1):52-74, 1970. · Zbl 0214.14804
[49] M. Minsky. Memoir on inventing the confocal scanning microscope. \(Scanning\), 10:128-138, 1988.
[50] J.R. Monck, A.F. Oberhauser, T.J. Keating, and J.M. Fernandez. Thin-section ratiometric Ca2+ images obtained by optical sectioning of fura-2 loaded mast cells. \(J. Cell Biol.\), 116(3):745-759, 1992.
[51] N. Moreno, S. Bougourd, J. Haseloff, and J. A. Feijò. Imaging Plant Cells. In J. B. Pawley, editor, \(Handbook of Biological Confocal Microscopy\), chapter 44, pages 769-787. Springer, 3\^{}{rd} edition, 2006.
[52] P. Pankajakshan. \(Blind Deconvolution for Confocal Laser Scanning Microscopy\). PhD thesis, Université de Nice-Sophia Antipolis, December 2009.
[53] P. Pankajakshan, L. Blanc-Féraud, Z. Kam, and J. Zerubia. Point-spread function retrieval in fluorescence microscopy. In \(Proc. IEEE International Symposium on Biomedical Imaging\), pages 1095-1098, Boston, USA, July 2009.
[54] P. Pankajakshan, B. Zhang, L. Blanc-Féraud, Z. Kam, J.-C. Olivo-Marin, and J. Zerubia. Blind deconvolution for thin-layered confocal imaging. \(Appl. Opt.\), 48(22):4437-4448, 2009.
[55] G.H. Patterson. Fluorescence microscopy below the diffraction limit. \(Seminars in cell & developmental biology\), 20(8):886-893, 2009. Imaging in Cell and Developmental Biology; Planar Cell Polarity.
[56] J.B. Pawley. Fundamental limits in confocal microscopy. In J. B. Pawley, editor, \(Handbook of Biological Confocal Microscopy\), chapter 2, pages 20-42. Springer, 3\^{}{rd} edition, 2006.
[57] J.B. Pawley, editor. \(Handbook of Biological Confocal Microscopy\). Springer, 3\^{}{rd} edition, 2006.
[58] J.B. Pawley. Points, pixels, and gray levels: digitizing image data. In J. B. Pawley, editor, \(Handbook of Biological Confocal Microscopy\), chapter 4, pages 59-79. Springer, 3\^{}{rd} edition, 2006.
[59] M. Platani, I. Goldberg, J.R. Swedlow, and A.I. Lamond. In Vivo analysis of Cajal body movement, separation and joining in live human cells. \(J.Cell.Biol.\), 151:1561-1574, 2000.
[60] C. Preza, M.I. Miller, L.J. Thomas Jr., and J.G. McNally. Regularized linear method for reconstruction of three-dimensional microscopic objects from optical sections. \(J. Opt. Soc. Am. A\), 9(2):219-228, 1992.
[61] E.H. Ratzlaff and A. Grinvald. A tandem-lens epifluorescence macroscope: hundred-fold brightness advantage for wide-field imaging. \(J Neurosci. Methods.\), 36:127-137, 1991.
[62] W.H. Richardson. Bayesian-based iterative method of image restoration. \(J. Opt. Soc. Am. A\), 62(1):55-59, January 1972.
[63] L.I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algorithms. \(Phys. D.\), 60:259-268, 1992. · Zbl 0780.49028
[64] P. Sarder and A. Nehorai. Deconvolution methods for 3-D fluorescence microscopy images. \(IEEE Signal Process. Mag.\), 23(3):32-45, May 2006.
[65] B.A. Scalettar, J.R. Sweldow, J.W. Sedat, and D.A. Agard. Dispersion, aberration and deconvolution in multi-wavelength fluorescence images. \(J. Microsc.\), 182:50-60, 1996.
[66] L. Schermelleh, R. Heintzmann, and H. Leonhardt. A guide to super-resolution fluorescence microscopy. \(J. Cell Biol.\), 190:165-175, 2010.
[67] F. Sedarat, E. Lin, E.D.W. Moore, and G. F.Tibbits. Deconvolution of confocal images of dihydropyridine and ryanodine receptors in developing cardiomyocytes. \(J. Appl. Physiol.\), 97:1098-1103, 2004.
[68] J.W. Shaevitz and D.A. Fletcher. Enhanced three-dimensional deconvolution microscopy using a measured depth-varying point-spread function. \(J. Opt. Soc. Am. A\), 24(9):2622-2627, 2007.
[69] S.L. Shaw. Imaging the live plant cell. \(The Plant Journal\), 45(4):573-598, 2006.
[70] C.J.R. Sheppard. Depth of field in optical microscopy. \(J. Microsc.\), 149:73-75, 1988.
[71] L. Sherman, J.Y. Ye, O. Albert, and T.B. Norris. Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror. \(J. Microsc.\), 206(1):65-71, 2002.
[72] J.B. Sibarita. Deconvolution microscopy. \(Advances in Biochemical Engineering and Biotechnology\), 92:201-243, 2005.
[73] J.-L. Starck and A. Bijaoui. Filtering and deconvolution by the wavelet transform. \(Signal Process.\), 35(3):195-211, 1994. · Zbl 0795.68204
[74] E.H.K. Stelzer. Contrast, resolution, pixelation, dynamic range and signal-to-noise ratio: fundamental limits to resolution in fluorescence light microscopy. \(J. Microsc.\), 189:15-24, January 1998.
[75] P.A. Stokseth. Properties of a defocused optical system. \(J. Opt. Soc. Am. A\), 59:1314-1321, october 1969.
[76] Y. Sun, P. Davis, E.A. Kosmacek, F. Ianzini, and M.A. Mackey. An open-source deconvolution software package for 3-D quantitative fluorescence microscopy imaging. \(J. Microsc.\), 236(3):180-193, 2009.
[77] T. Suzuki, T. Matsuzaki, H. Hagiwara, T. Aoki, and K. Takata. Recent Advances in Fluorescent Labeling Techniques for Fluorescence Microscopy. \(Acta Histochem. Cytochem.\), 40:131-137, 2007.
[78] J.R. Swedlow, K. Hu, P.D. Andrews, D.S. Roos, and J.M. Murray. Measuring tubulin content in Toxoplasma gondii: a comparison of laser-scanning confocal and wide-field fluorescence microscopy. \(Proc. Soc. Natl. Acad. Sci.\), 99(4):2014-2019, February 2002.
[79] A.N. Tikhonov and V.A. Arsenin. \(Solution of Ill-posed Problems\). Winston and Sons, 1977. · Zbl 0354.65028
[80] T. Tommasi, A. Diaspro, and B. Bianco. 3-D reconstruction in optical microscopy by a frequency-domain approach. \(Signal Process.\), 32(3):357-366, 1993.
[81] R.Y. Tsien, L. Ernst, and A. Waggonnr. Fluorophores for confocal microscopy: photophysics and photochemistry. In J. B. Pawley, editor, \(Handbook of Biological Confocal Microscopy\), chapter 39, pages 690-702. Springer, 3\^{}{rd} edition, 2006.
[82] G.M.P. van Kempen, L.J. van Vliet, P.J. Verveer, and H.T.M. van Der Voort. A quantitative comparison of image restoration methods for confocal microscopy. \(J. Microsc.\), 12:354-365, March 1997.
[83] P.J. Verveer, M.J. Gemkow, and T.M. Jovin. A comparison of image restoration approaches applied to three-dimensional confocal and wide-field fluorescence microscopy. \(J. Microsc.\), 193:50-61, 1999.
[84] R.M. Willett, I. Jermyn, R.D. Nowak, and J. Zerubia. Wavelet-based superresolution in astronomy. In F. Ochsenbein, M.G. Allen, and D. Egret, editors, \(Proc. Astronomical Data Analysis Software and Systems\), volume 314 of \(Astronomical Society of the Pacific\), pages 107-116, Strasbourg, France, July 2003.
[85] K.I. Willig, J. Keller, M. Bossi, and S.W. Hell. STED microscopy resolves nanoparticle assemblies. \(New J. Phys.\), 8:106-113, 2006.
[86] R. Zanella, P. Boccacci, L. Zanni, and M. Bertero. Efficient gradient projection methods for edge-preserving removal of poisson noise. \(Inverse Problems\), 25(4):045010, 2009. · Zbl 1163.65042
[87] B. Zhang, J. Zerubia, and J.C. Olivo-Marin. Gaussian approximations of fluorescence microscope point-spread function models. \(Appl. Opt.\), 46(10):1819-1829, 2007.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.