×

zbMATH — the first resource for mathematics

A methodology for performing global uncertainty and sensitivity analysis in systems biology. (English) Zbl 1400.92013
Summary: Accuracy of results from mathematical and computer models of biological systems is often complicated by the presence of uncertainties in experimental data that are used to estimate parameter values. Current mathematical modeling approaches typically use either single-parameter or local sensitivity analyses. However, these methods do not accurately assess uncertainty and sensitivity in the system as, by default, they hold all other parameters fixed at baseline values. Using techniques described within we demonstrate how a multi-dimensional parameter space can be studied globally so all uncertainties can be identified. Further, uncertainty and sensitivity analysis techniques can help to identify and ultimately control uncertainties. In this work we develop methods for applying existing analytical tools to perform analyses on a variety of mathematical and computer models. We compare two specific types of global sensitivity analysis indexes that have proven to be among the most robust and efficient. Through familiar and new examples of mathematical and computer models, we provide a complete methodology for performing these analyses, in both deterministic and stochastic settings, and propose novel techniques to handle problems encountered during these types of analyses.

MSC:
92B15 General biostatistics
92C42 Systems biology, networks
62P10 Applications of statistics to biology and medical sciences; meta analysis
92-02 Research exposition (monographs, survey articles) pertaining to biology
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Anderson, T.W., An introduction to multivariate statistical analysis, third ed. wiley series in probability and statistics, (2003), Wiley-Interscience Hoboken, NJ
[2] Apostolakis, G., The concept of probability in safety assessments of technological systems, Science, 250, 4986, 1359-1364, (1990)
[3] Blower, S.M.; Dowlatabadi, H., Sensitivity and uncertainty analysis of complex-models of disease transmission—an HIV model, as an example, Int. stat. rev., 62, 2, 229-243, (1994) · Zbl 0825.62860
[4] Cacuci, D.G.; Ionescu-Bujor, M., A comparative review of sensitivity and uncertainty analysis of large-scale systems—II: statistical methods, Nucl. sci. eng., 147, 3, 204-217, (2004)
[5] Chang, S.T., Linderman, J.J., Kirschner, D.E., 2008. Multiple polymorphisms on antigen presentation and susceptilbity to M. tuberculosis infection. Infect. Immun., doi:10.1128/IAI.01677-07.
[6] Collins, D.C.; Avissar, R., An evaluation with the Fourier amplitude sensitivity test (FAST) of which land-surface parameters are of greatest importance in atmospheric modeling, J. climate, 7, 5, 681-703, (1994)
[7] Cooke, R., Experts in uncertainty: opinion and subjective probability in science. environmental ethics and science policy, (1991), Oxford University Press New York
[8] Cukier, R.I.; Fortuin, C.M.; Shuler, K.E.; Petschek, A.G.; Schaibly, J.H., Study of sensitivity of coupled reaction systems to uncertainties in rate coefficients 1. theory, J. chem. phys., 59, 8, 3873-3878, (1973)
[9] Draper, D., Assessment and propagation of model uncertainty, J. R. stat. soc. B—methodological, 57, 1, 45-97, (1995) · Zbl 0812.62001
[10] Evans, J.S.; Gray, G.M.; Sielken, R.L.; Smith, A.E.; Valdezflores, C.; Graham, J.D., Use of probabilistic expert judgment in uncertainty analysis of carcinogenic potency, Regul. toxicol. pharmacol., 20, 1, 15-36, (1994)
[11] Helton, J.C., Uncertainty and sensitivity analysis techniques for use in performance assessment for radioactive-waste disposal, Reliab. eng. syst. saf., 42, 2-3, 327-367, (1993)
[12] Helton, J.C., Uncertainty and sensitivity analysis in the presence of stochastic and subjective uncertainty, J. stat. comput. simulation, 57, 1-4, 3-76, (1997) · Zbl 0937.62004
[13] Helton, J.C., Uncertainty and sensitivity analysis in performance assessment for the waste isolation pilot plant, Comput. phys. commun., 117, 1-2, 156-180, (1999)
[14] Helton, J.C.; Breeding, R.J., Calculation of reactor accident safety goals, Reliab. eng. syst. saf., 39, 2, 129-158, (1993)
[15] Helton, J.C.; Davis, F.J., Illustration of sampling-based methods for uncertainty and sensitivity analysis, Risk anal., 22, 3, 591-622, (2002)
[16] Helton, J.C.; Davis, F.J., Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems, Reliab. eng. syst. saf., 81, 1, 23-69, (2003)
[17] Helton, J.C.; Johnson, J.D.; Shiver, A.W.; Sprung, J.L., Uncertainty and sensitivity analysis of early exposure results with the maccs reactor accident consequence model, Reliab. eng. syst. saf., 48, 2, 91-127, (1995)
[18] Helton, J.C.; Martell, M.A.; Tierney, M.S., Characterization of subjective uncertainty in the 1996 performance assessment for the waste isolation pilot plant, Reliab. eng. syst. saf., 69, 1-3, 191-204, (2000)
[19] Helton, J.C.; Johnson, J.D.; Sallaberry, C.J.; Storlie, C.B., Survey of sampling-based methods for uncertainty and sensitivity analysis, Reliab. eng. syst. saf., 91, 10-11, 1175-1209, (2006)
[20] Helton, J.C.; Johnson, J.D.; Oberkampf, W.L.; Storlie, C.B., A sampling-based computational strategy for the representation of epistemic uncertainty in model predictions with evidence theory, Comput. methods appl. mech. eng., 196, 37-40, 3980-3998, (2007) · Zbl 1173.62301
[21] Hoare, A.; Regan, D.G.; Wilson, D.P., Sampling and sensitivity analyses tools (sasat) for computational modeling, Theor. biol. med. model., 5, 4, (2008), (open access at ⟨http://www.tbiomed.com/content/5/1/4⟩)
[22] Hora, S.C.; Helton, J.C., A distribution-free test for the relationship between model input and output when using Latin hypercube sampling, Reliab. eng. syst. saf., 79, 3, 333-339, (2003)
[23] Hora, S.C.; Iman, R.L., Expert opinion in risk analysis—the nureg-1150 methodology, Nucl. sci. eng., 102, 4, 323-331, (1989)
[24] Iman, R.L.; Conover, W.J., Small sample sensitivity analysis techniques for computer-models, with an application to risk assessment, Commun. stat. A—theory methods, 9, 17, 1749-1842, (1980) · Zbl 0449.68059
[25] Iman, R.L.; Conover, W.J., A distribution-free approach to inducing rank correlation among input variables, Commun. stat. B—simulation comput., 11, 3, 311-334, (1982) · Zbl 0496.65071
[26] Iman, R.L.; Conover, W.J., A measure of top-down correlation, Technometrics, 29, 3, 351-357, (1987) · Zbl 0639.62041
[27] Iman, R.L.; Davenport, J.M., Rank correlation plots for use with correlated input variables, Commun. stat. B—simulation comput., 11, 3, 335-360, (1982)
[28] Iman, R.L.; Helton, J.C., An investigation of uncertainty and sensitivity analysis techniques for computer models, Risk anal., 8, 1, 71-90, (1988)
[29] Kirschner, D.E.; Chang, S.T.; Riggs, T.W.; Perry, N.; Linderman, J.J., Toward a multiscale model of antigen presentation in immunity, Immunol. rev., 216, 93-118, (2007)
[30] Kleijnen, J.P.C.; Helton, J.C., Statistical analyses of scatterplots to identify important factors in large-scale simulations, 1: review and comparison of techniques, Reliab. eng. syst. saf., 65, 2, 147-185, (1999)
[31] Lempert, R.; Popper, S.; Bankes, S., Confronting surprise, Soc. sci. comput. rev., 20, 4, 420-440, (2002)
[32] Lotka, A.J., Elements of physical biology, (1925), Williams & Wilkins Co. Baltimore · JFM 51.0416.06
[33] Marino, S.; Kirschner, D.E., The human immune response to mycobacterium tuberculosis in lung and lymph node, J. theor. biol., 227, 4, 463-486, (2004)
[34] Marino, S.; Pawar, S.; Fuller, C.L.; Reinhart, T.A.; Flynn, J.L.; Kirschner, D.E., Dendritic cell trafficking and antigen presentation in the human immune response to mycobacterium tuberculosis, J. immunol., 173, 1, 494-506, (2004)
[35] Marino, S.; Beretta, E.; Kirschner, D.E., The role of delays in innate and adaptive immunity to intracellular bacteria infection, Math. biosci. eng., 4, 2, 261-286, (2007) · Zbl 1122.92035
[36] McKay, M.; Meyer, M., Critique of and limitations on the use of expert judgements in accident consequence uncertainty analysis, Radiat. prot. dosim., 90, 3, 325-330, (2000)
[37] Mckay, M.D.; Beckman, R.J.; Conover, W.J., Comparison of 3 methods for selecting values of input variables in the analysis of output from a computer code, Technometrics, 21, 2, 239-245, (1979) · Zbl 0415.62011
[38] Morris, M.D., Factorial sampling plans for preliminary computational experiments, Technometrics, 33, 2, 161-174, (1991)
[39] Morris, M.D., Three technometrics experimental design classics, Technometrics, 42, 1, 26-27, (2000)
[40] Parry, G.W.; Winter, P.W., Characterization and evaluation of uncertainty in probabilistic risk analysis, Nucl. saf., 22, 1, 28-42, (1981)
[41] Pate’-Cornell, M.E., Uncertainties in risk analysis: six levels of treatment, Reliab. eng. syst. saf., 54, 2-3, 95-111, (1996)
[42] Perelson, A.S.; Kirschner, D.E.; De Boer, R., Dynamics of HIV infection of CD4+ T cells, Math. biosci., 114, 1, 81-125, (1993) · Zbl 0796.92016
[43] Ratto, M.; Pagano, A.; Young, P., State dependent parameter metamodelling and sensitivity analysis, Comput. phys. commun., 177, 11, 863-876, (2007)
[44] Riggs, T.; Walts, A.; Perry, N.; Bickle, L.; Lynch, J.N.; Myers, A.; Flynn, J.; Linderman, J.J.; Miller, M.J.; Kirschner, D.E., A comparison of random vs. chemotaxis-driven contacts of T cells with dendritic cells during repertoire scanning, J. theor. biol., 250, 4, 732-751, (2008) · Zbl 1397.92102
[45] Saltelli, A., Making best use of model evaluations to compute sensitivity indices, Comput. phys. commun., 145, 2, 280-297, (2002) · Zbl 0998.65065
[46] Saltelli, A., Sensitivity analysis in practice: A guide to assessing scientific models, (2004), Wiley Hoboken, NJ · Zbl 1049.62112
[47] Saltelli, A.; Bolado, R., An alternative way to compute Fourier amplitude sensitivity test (FAST), Comput. stat. data anal., 26, 4, 445-460, (1998) · Zbl 1042.65506
[48] Saltelli, A.; Marivoet, J., Nonparametric statistics in sensitivity analysis for model output—a comparison of selected techniques, Reliab. eng. syst. saf., 28, 2, 229-253, (1990)
[49] Saltelli, A.; Tarantola, S.; Chan, K.P.S., A quantitative model-independent method for global sensitivity analysis of model output, Technometrics, 41, 1, 39-56, (1999)
[50] Saltelli, A.; Chan, K.; Scott, E.M., Sensitivity analysis. wiley series in probability and statistics, (2000), Wiley Chichester, New York
[51] Saltelli, A.; Ratto, M.; Tarantola, S.; Campolongo, F., Sensitivity analysis for chemical models, Chem. rev., 105, 7, 2811-2827, (2005)
[52] Savage, I.R., Contributions to the theory of rank order-statistics—the 2-sample case, Ann. math. stat., 27, 3, 590-615, (1956) · Zbl 0073.13904
[53] Schaibly, J.H.; Shuler, K.E., Study of sensitivity of coupled reaction systems to uncertainties in rate coefficients 2. applications, J. chem. phys., 59, 8, 3879-3888, (1973)
[54] Segovia-Juarez, J.L.; Ganguli, S.; Kirschner, D., Identifying control mechanisms of granuloma formation during M. tuberculosis infection using an agent-based model, J. theor. biol., 231, 3, 357-376, (2004)
[55] SimLab. 2006. Distributed under the SimLab Software License, Version 1.0 ⟨http://simlab.jrc.ec.europa.eu/⟩.
[56] Storlie, C.B.; Helton, J.C., Multiple predictor smoothing methods for sensitivity analysis: description of techniques, Reliab. eng. syst. saf., 93, 1, 28-54, (2008)
[57] Storlie, C.B.; Helton, J.C., Multiple predictor smoothing methods for sensitivity analysis: example results, Reliab. eng. syst. saf., 93, 1, 55-77, (2008)
[58] Tarantola, S.; Gatelli, D.; Mara, T.A., Random balance designs for the estimation of first order global sensitivity indices, Reliab. eng. syst. saf., 91, 6, 717-727, (2006)
[59] Volterra, V., 1926. Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. Mem. R. Accad. Naz. dei Lincei. Ser. VI, vol. 2 (English version can be found in Animal Ecology. McGraw-Hill, 1931. Translated from 1926 edition by R.N. Chapman. Title “Variations and fluctuations of the number of individuals in animal species living together.”).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.