×

What is the dimension of citation space? (English) Zbl 1400.91456

Summary: Citation networks represent the flow of information between agents. They are constrained in time and so form directed acyclic graphs which have a causal structure. Here we provide novel quantitative methods to characterise that structure by adapting methods used in the causal set approach to quantum gravity by considering the networks to be embedded in a Minkowski spacetime and measuring its dimension using Myrheim-Meyer and Midpoint-scaling estimates. We illustrate these methods on citation networks from the arXiv, supreme court judgements from the USA, and patents and find that otherwise similar citation networks have measurably different dimensions. We suggest that these differences can be interpreted in terms of the level of diversity or narrowness in citation behaviour.

MSC:

91D30 Social networks; opinion dynamics
05C82 Small world graphs, complex networks (graph-theoretic aspects)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Harzing, A. W., Publish or Perish (2010), Tarma Software Research
[2] Abbas, A.; Zhang, L.; Khan, S. U., A literature review on the state-of-the-art in patent analysis, World Pat. Inf., 37, 3-13 (2014)
[3] Martin, P. W., Introduction to Basic Legal Citation (2007), Legal Information Institute
[4] Brooks, T. A., Evidence of complex citer motivations, J. Am. Soc. Inf. Sci., 37, 34-36 (1986)
[5] Simkin, M.; Roychowdhury, V., Read before you cite!, Complex Syst., 14, 269-274 (2003)
[6] Bornmann, L.; Daniel, H. D., What do citation counts measure? A review of studies on citing behavior, J. Doc., 64, 45-80 (2008)
[7] Redner, S., How popular is your paper? An empirical study of the citation distribution, Eur. Phys. J. B, 134, 131-134 (1998)
[8] Tsallis, C.; de Albuquerque, M., Are citations of scientific papers a case of nonextensivity ?, Phys. J. B (2000)
[9] Simkin, M. V.; Roychowdhury, V. P., Stochastic modeling of citation slips, Scientometrics, 62, 3, 367-384 (2005)
[10] Radicchi, F.; Fortunato, S.; Castellano, C., Universality of citation distributions: Toward an objective measure of scientific impact, Proc. Natl. Acad. Sci., 105, 17268-17272 (2008)
[11] Eom, Y.-H.; Fortunato, S., Characterizing and modeling citation dynamics, PLoS One, 6, e24926 (2011)
[12] Evans, T. S.; Hopkins, N.; Kaube, B. S., Universality of performance indicators based on citation and reference counts, Scientometrics, 93, 473-495 (2012)
[13] Ren, F.-X.; Shen, H.-W.; Cheng, X.-Q., Modeling the clustering in citation networks, Physica A, 391, 3533-3539 (2012)
[14] Carstens, C. J., A uniform random graph model for directed acyclic networks and its effect on motif-finding, J. Complex Netw., 2, 419-430 (2014) · Zbl 1397.05163
[15] Bommarito, M. J.; Katz, D. M.; Zelner, J. L.; Fowler, J. H., Distance measures for dynamic citation networks, Physica A, 389, 4201-4208 (2010)
[16] Lucio-Arias, D.; Leydesdorff, L., Main-path analysis and path-dependent transitions in HistCite-based historiograms, J. Am. Soc. Inf. Sci., 59, 1948-1962 (2008)
[17] Šubelj, L.; Fiala, D.; Bajec, M., Network-based statistical comparison of citation topology of bibliographic databases, Sci. Rep., 4, 6496 (2014)
[18] Price, D. S., Networks of scientific papers, Science, 149, 510-515 (1965)
[19] Price, D. S., A general theory of bibliometric and other cumulative advantage processes, J. Am. Soc. Inf. Sci., 27, 292-306 (1976)
[20] Börner, K.; Maru, J. T.; Goldstone, R. L., The simultaneous evolution of author and paper networks, PNAS, 101, 5266-5527 (2004)
[21] Simkin, M. V.; Roychowdhury, V. P., A mathematical theory of citing, J. Am. Soc. Inf. Sci., 58, 1661-1673 (2007)
[22] Wu, Z.-X.; Holme, P., Modeling scientific-citation patterns and other triangle-rich acyclic networks, Phys. Rev. E, 80, 80 (2009)
[23] Amancio, D. R.; Oliveira, O. N.; da Fontoura Costa, L., Three-feature model to reproduce the topology of citation networks and the effects from authors’ visibility on their h-index, J. Informetr., 6, 427-434 (2013)
[24] Wu, Y.; Fu, T. Z.J.; Chiu, D. M., Generalized preferential attachment considering ageing, J. Informetr., 8, 650-658 (2014)
[26] Xie, Z.; Ouyang, Z.; Zhang, P.; Yi, D.; Kong, D., Modeling the Citation Network by Network Cosmology, PLoS One, 10, e0120687 (2015)
[27] Barthelemy, M., Spatial networks, Phys. Rep., 499, 1-101 (2011)
[28] Expert, P.; Evans, T.; Blondel, V. D.; Lambiotte, R., Uncovering space-independent communities in spatial networks, Proc. Natl. Acad. Sci. USA, 108, 7663-7668 (2011) · Zbl 1256.91043
[29] Daqing, L.; Kosmidis, K.; Bunde, A.; Havlin, S., Dimension of spatially embedded networks, Nat. Phys., 7, 481-484 (2011)
[30] Krioukov, D.; Papadopoulos, F.; Kitsak, M.; Vahdat, A.; Boguna, M., Hyperbolic geometry of complex networks, Phys. Rev. E, 82, Article 036106 pp. (2010)
[31] Krioukov, D.; Kitsak, M.; Sinkovits, R. S.; Rideout, D.; Meyer, D.; Boguñá, M., Network cosmology, Sci. Rep., 2, 793 (2012)
[32] Xie, Z.; Zhu, J.; Kong, D.; Li, J., A random geometric graph built on a time-varying Riemannian manifold, Physica A, 436, 492-498 (2015) · Zbl 1400.05215
[33] Bombelli, L.; Lee, J.; Meyer, D.; Sorkin, R., Space-time as a causal set, Phys. Rev. Lett., 59, 5, 521-524 (1987)
[34] Brightwell, G.; Gregory, R., Structure of random discrete spacetime, Phys. Rev. Lett., 66, 3 (1991) · Zbl 0968.83509
[35] Dowker, F., Causal sets as discrete spacetime, Contemp. Phys., 47, 1, 37-41 (2006)
[37] Bollobás, B.; Brightwell, G., Box-spaces and random partial orders, Trans. Amer. Math. Soc., 324, I, 59-72 (1991) · Zbl 0726.06001
[39] Meyer, D., The dimension of causal sets (1988), (Ph.D. thesis)
[40] Reid, D. D., Manifold dimension of a causal set: Tests in conformally flat spacetimes, Phys. Rev. D, 67, 2, 1-8 (2003)
[41] Bollobás, B.; Winkler, P., The longest chain among random points in Euclidean space, Proc. Amer. Math. Soc., 347-353 (1988) · Zbl 0655.06004
[42] Ilie, R.; Thompson, G.; Reid, D. D., A numerical study of the correspondence between paths in a causal set and geodesics in the continuum, Classical Quantum Gravity, 23, 3275-3285 (2006) · Zbl 1096.83010
[43] Aho, A.; Garey, M.; Ullman, J., The transitive reduction of a directed graph, SIAM J. Comput., 1, 2, 131-137 (1972) · Zbl 0247.05128
[44] Clough, J.; Gollings, J.; Loach, T.; Evans, T., Transitive reduction of citation networks, J. Complex Netw., 3, 2, 189-203 (2015)
[46] Fowler, J. H.; Jeon, S., The authority of Supreme Court precedent, Social Networks, 30, 16-30 (2008)
[48] Newman, M.; Park, J., Why social networks are different from other types of networks, Phys. Rev. E, 68, Article 036122 pp. (2003)
[49] Serrano, M.; Krioukov, D.; Boguna, M., Self-similarity of complex networks and hidden metric spaces, Phys. Rev. Lett., 100, 7, Article 078701 pp. (2008)
[50] Krioukov, D.; Ostilli, Massimo, Duality between equilibrium and growing networks, Phys. Rev. E, 88, 2, Article 022808 pp. (2013)
[51] Freeman, L., Spheres, cubes and boxes: graph dimensionality and network structure, Social Networks, 5, 139-156 (1983)
[52] Bilke, S.; Peterson, C., Topological properties of citation and metabolic networks, Phys. Rev. E, 64, Article 036106 pp. (2001)
[53] Song, C.; Gallos, L. K.; Havlin, S.; Makse, H. A., How to calculate the fractal dimension of a complex network: the box covering algorithm, J. Stat. Mech., P03006 (2007) · Zbl 07120399
[54] Bonato, A.; Gleich, D.; Kim, M.; Mitsche, D., Dimensionality of social networks using motifs and eigenvalues, PLoS One, 9, e106052 (2014)
[55] Shanker, O., Complex network dimension and path counts, Theoret. Comput. Sci., 411, 2454-2458 (2010) · Zbl 1207.68172
[57] Ferretti, L.; Cortelezzi, M.; Mamino, M., Duality between preferential attachment and static networks on hyperbolic spaces, Europhys. Lett. EPL, 1-8 (2014)
[58] Eichhorn, A.; Mizera, S., Spectral dimension in causal set quantum gravity, Classical Quantum Gravity, 31, Article 125007 pp. (2014) · Zbl 1296.83024
[59] Brightwell, G.; Winkler, P., Counting linear extensions, Order, 225-242 (1991) · Zbl 0759.06001
[60] Felsner, S.; Fishbur, P. C.; Trotter, W. T., Finite three dimensional partial orders which are not sphere orders, Discrete Math., 201, 101-132 (1999) · Zbl 0941.06005
[61] Winkler, P., Random orders, Order, 1, 317-331 (1985) · Zbl 0565.06002
[62] Sibani, P.; Jensen, H. J., (Stochastic Dynamics of Complex Systems: From Glasses to Evolution. Stochastic Dynamics of Complex Systems: From Glasses to Evolution, Series on Complexity Science, vol. 2 (2013), Imperial College Press) · Zbl 1345.93001
[63] Wilf, H., The asymptotic behavior of the Stirling numbers of the first kind, J. Combin. Theory Ser. A, 349, 344-349 (1993) · Zbl 0795.05005
[64] Hwang, H., Asymptotic expansions for the Stirling numbers of the first kind, J. Combin. Theory Ser. A, 7141, 7141, 1-7 (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.