Mortality models and longevity risk for small populations. (English) Zbl 1400.91254

Summary: Prolonging life expectancy and improving mortality rates is a common trend of the 21st century. Stochastic models, such as Lee-Carter model [R. D. Lee and L. R. Carter, J. Am. Stat. Assoc. 87, No. 419, 659–675 (1992; Zbl 1351.62186)], are a popular choice to deal with longevity risk. However, these mortality models often have unsatisfactory results for the case of small populations. Thus, quite a few modifications (such as approximation and maximal likelihood estimation) to the Lee-Carter can be used for the case of small populations or missing observations. In this study, we propose an alternative approach (graduation methods) to improve the performance of stochastic models. The proposed approach is a combination of data aggregation and mortality graduation. In specific, we first combine the historical data of target population, treating it as the reference population, and use the data graduation methods (Whittaker and partial standard mortality ratio) to stabilize the mortality estimates of the target population. We first evaluate whether the proposed method have smaller errors in mortality estimation than the Lee-Carter model in the case of small populations, and explore if it is possible to reduce the bias of parameter estimates in the Lee-Carter model. We found that the proposed approach can improve the model fit of the Lee-Carter model when the population size is 200,000 or less.


91B30 Risk theory, insurance (MSC2010)
62P05 Applications of statistics to actuarial sciences and financial mathematics


Zbl 1351.62186
Full Text: DOI


[1] Booth, H.; Hyndman, R. J.; Tickle, L.; De Jong, P., Lee-Carter mortality forecasting: A multi-country comparison of variants and extensions, Demogr. Res., 15, 289-310, (2006)
[2] Brouhns, N.; Denuit, M.; Vermunt, J. K., A Poisson log-bilinear regression approach to the construction of projected life-tables, Insurance Math. Econom., 31, 373-393, (2002) · Zbl 1074.62524
[3] Cairns, A. J.G.; Blake, D.; Dowd, K., A two-factor model for stochastic mortality with parameter uncertainty: theory and calibration, J. Risk Insurance, 73, 4, 687-718, (2006)
[4] Cairns, A. J.G.; Blake, D.; Dowd, K.; Coughlan, G. D.; Khalaf-Allah, M., Bayesian stochastic mortality modelling for two populations, ASTIN Bull., 41, 1, 29-59, (2011)
[5] Chen, L.; Cairns, A. J.G.; Kleinow, T., Small population bias and sampling effects in stochastic mortality modelling, Eur. Actuar. J., (2017), published on line: 23 January 2017 · Zbl 1394.91201
[6] Dowd, K.; Blake, D.; Cairns, A. J.G.; Coughlan, G. D.; Khalaf-Allah, M., A gravity model of mortality rates for two relatedbel populations, N. Am. Actuar. J., 15, 334-356, (2011) · Zbl 1228.91032
[7] Gavin, J.; Haberman, S.; Verrall, R., Graduation by kernel and adaptive kernel methods with a boundary correction, Actuar. Res. Clear. House (ARCH), 1995, 2, 1-37, (1995)
[8] Jarner, S. F.; Kryger, E. M., Modelling adult mortality in small populations: the SAINT model, ASTIN Bull., 41, 2, 377-418, (2011) · Zbl 1239.91128
[9] Kimerdorf, G. S.; Jones, D. A., Bayesian graduation, Trans. Soc. Actuar., XIX, Part I, 66-112, (1967)
[10] Klugman, S. A.; Panjer, H. H.; Willmot, G. E., Loss Models: From Data to Decisions, (2012), John Wiley & Sons · Zbl 1272.62002
[11] Lee, W. C., A partial SMR approach to smoothing age-specific rates, Ann. Epidemiol., 13, 2, 89-99, (2003)
[12] Lee, R. D.; Carter, L. R., Modeling and forecasting US mortality, J. Amer. Statist. Assoc., 87, 419, 659-671, (1992) · Zbl 1351.62186
[13] Lewis, E.B., 1982. Control of Body Segment Differentiation in Drosophila by the Bithorax Gene Complex, Embryonic Development, Part A: Genetics Aspects, edited by Burger and Weber, New York, pp. 269-288.
[14] Li, N.; Lee, R., Coherent mortality forecasts for a group of populations: an extension of the Lee-Carter method, Popul. Assoc. Am., 42, 3, 575-594, (2005)
[15] Li, N.; Lee, R.; Tuljapurkar, S., Using the Lee-Carter method to forecast mortality for populations with limited data, Internat. Statist. Rev., 72, 1, 19-36, (2004) · Zbl 1330.62349
[16] London, R. L., Graduation: The Revision of Estimates, (1985), ACTEX Publication
[17] Madrigal, A. M.; Matthews, F. E.; Patel, D. D.; Gaches, A. T.; Baxter, S. D., What longevity predictors should be allowed for when valuing pension scheme liabilities, Brit. Actuar. J., 16, 1, 1-38, (2011)
[18] Russolillo, M.; Giordano, G.; Haberman, S., Extending the Lee-Carter model: A three-way decomposition, Scand. Actuar. J., 2011, 2, 96-117, (2011) · Zbl 1277.62260
[19] Thatcher, A. R.; Kannisto, V.; Andreev, K., The survivor ratio method for estimating numbers at high ages, Demogr. Res., 6, 1, 2-15, (2002)
[20] Wang, H. C.; Jin, S.; Yue, C. J., A simulation study of small area mortality projection, Popul. Stud., 45, 77-110, (2012), (in Chinese)
[21] Wilmoth, J., 1993. Computational Methods for Fitting and Extrapolating the Lee-Carter Model of Mortality Change. Technical Report, Department of Demography, University of California, Berkeley.
[22] Wisniowski, A.; Smith, P. W.; Bijak, J.; Raymer, J.; Forster, J. J., Bayesian population forecasting: extending the Lee-Carter method, Demography, 52, 3, 1035-1059, (2015)
[23] Yue, C. J., Mortality compression and longevity risk, N. Am. Actuar. J., 16, 4, 434-448, (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.