Identifiability, cointegration and the gravity model. (English) Zbl 1400.91248

Summary: The gravity model of K. Dowd et al. [N. Am. Actuar. J. 15, No. 2, 334–356 (2011; Zbl 1228.91032)] was introduced in order to achieve coherent projections of mortality between two related populations. However, this model as originally formulated is not well-identified since it gives projections which depend on the arbitrary identifiability constraints imposed on the underlying mortality model when fitting it to data. In this paper, we discuss how the gravity model can be modified to give well-identified projections of mortality rates and how this result can be generalised to more complicated mortality models.


91B30 Risk theory, insurance (MSC2010)
91D20 Mathematical geography and demography


Zbl 1228.91032


Human Mortality
Full Text: DOI Link


[1] Cairns, A. J.; Blake, D.; Dowd, K., Pricing death: frameworks for the valuation and securitization of mortality risk, ASTIN Bull., 36, 1, 79-120, (2006) · Zbl 1162.91403
[2] Cairns, A. J.; Blake, D.; Dowd, K.; Coughlan, G. D.; Epstein, D.; Ong, A.; Balevich, I., A quantitative comparison of stochastic mortality models using data from england and wales and the united states, N. Am. Actuar. J., 13, 1, 1-35, (2009)
[3] Cairns, A. J.; Blake, D.; Dowd, K.; Coughlan, G. D.; Khalaf-Allah, M., Bayesian stochastic mortality modelling for two populations, ASTIN Bull., 41, 1, 29-59, (2011)
[4] Carter, R.; Lee, D., Modeling and forecasting US sex differentials, Int. J. Forecast., 8, 393-411, (1992)
[5] Coughlan, G. D.; Khalaf-Allah, M.; Ye, Y.; Kumar, S.; Cairns, A. J.; Blake, D.; Dowd, K., Longevity hedging 101: A framework for longevity basis risk analysis and hedge effectiveness, N. Am. Actuar. J., 15, 2, 150-176, (2011)
[6] Dowd, K.; Cairns, A. J.; Blake, D.; Coughlan, G. D., A gravity model of mortality rates for two related populations, N. Am. Actuar. J., 15, 2, 334-356, (2011) · Zbl 1228.91032
[7] French, D., International mortality modelling - an economic perspective, Econom. Lett., 122, 2, 182-186, (2014)
[8] Harper, S.; Lynch, J.; Burris, S.; Davey Smith, G., Trends in the black-white life expectancy gap in the united states, 1983-2003, J. Amer. Med. Assoc., 297, 11, 1224-1232, (2007)
[9] Human Mortality Database, 2014. Human Mortality Database. Tech. rep., University of California, Berkeley and Max Planck Institute for Demographic Research. URL www.mortality.org.
[10] Hunt, A., Blake, D., 2015a. Identifiability in age/period mortality models. Tech. rep., Pensions Institute PI 15-08, Cass Business School, City University of London.
[11] Hunt, A., Blake, D., 2015b. Identifiability in age/period/cohort mortality models. Tech. rep., Pensions Institute PI 15-09, Cass Business School, City University of London.
[12] Hunt, A.; Blake, D., Modelling longevity bonds: analysing the swiss re kortis bond, Insurance Math. Econom., 63, 12-29, (2015) · Zbl 1348.91150
[13] Hunt, A., Blake, D., 2015d. On the structure and classification of mortality models. Tech. rep., Pensions Institute PI 15-06, Cass Business School, City University of London.
[14] Hunt, A., Blake, D., 2016. Consistent mortality projections allowing for trend changes. Work in Progress.
[15] Hyndman, R. J.; Booth, H.; Yasmeen, F., Coherent mortality forecasting: the product-ratio method with functional time series models, Demography, 50, 261-283, (2013)
[16] Jarner, S. F.; Kryger, E. M., Modelling mortality in small populations: the SAINT model, ASTIN Bull., 41, 2, 377-418, (2011) · Zbl 1239.91128
[17] Lee, R. D.; Carter, L. R., Modeling and forecasting U.S. mortality, J. Amer. Statist. Assoc., 87, 419, 659-671, (1992) · Zbl 1351.62186
[18] Li, J. S.-H.; Hardy, M. R., Measuring basis risk in longevity hedges, N. Am. Actuar. J., 15, 2, 177-200, (2011) · Zbl 1228.91042
[19] Li, N.; Lee, R. D., Coherent mortality forecasts for a group of populations: an extension of the Lee-Carter method, Demography, 42, 3, 575-594, (2005)
[20] Nielsen, B.; Nielsen, J. P., Identification and forecasting in mortality models, Sci. World J., (2014), Article ID 347043 · Zbl 1328.62575
[21] Plat, R., On stochastic mortality modeling, Insurance Math. Econom., 45, 3, 393-404, (2009) · Zbl 1231.91227
[22] Reichmuth, W., Sarferaz, S., 2008. Bayesian demographic modeling and forecasting: An application to U.S. mortality. Tech. rep., Humbolt University, Berlin.
[23] Villegas, A. M.; Haberman, S., On the modeling and forecasting of socioeconomic mortality differentials: an application to deprivation and mortality in england, N. Am. Actuar. J., 18, 1, 168-193, (2014) · Zbl 1412.91057
[24] Wang, H.; Preston, S. H., Forecasting united states mortality using cohort smoking histories, Proc. Natl. Acad. Sci. USA, 106, 2, 393-398, (2009)
[25] Yang, S. S.; Wang, C.-W., Pricing and securitization of multi-country longevity risk with mortality dependence, Insurance Math. Econom., 52, 2, 157-169, (2013) · Zbl 1284.91556
[26] Zhou, R.; Wang, Y.; Kaufhold, K.; Li, J. S.-H.; Tan, K. S., Modeling period effects in multi-population mortality models: applications to solvency II, N. Am. Actuar. J., 18, 1, 150-167, (2014) · Zbl 1412.91060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.