Modeling trend processes in parametric mortality models. (English) Zbl 1400.91241

Summary: Parametric mortality models like those of R. D. Lee and L. R. Carter [J. Am. Stat. Assoc. 87, No. 419, 659–675 (1992; Zbl 1351.62186)], A. J. Cairns et al. [“A two-factor model for stochastic mortality with parameter uncertainty: theory and calibration”,J. Risk Insurance 73, No. 4, 687–718 (2006; doi:10.1111/j.1539-6975.2006.00195.x)], or R. Plat [Insur. Math. Econ. 45, No. 3, 393–404 (2009; Zbl 1231.91227)] typically include one or more time dependent parameters. Often, a random walk with drift is used to project these parameters into the future. However, longer time series of historical mortality data often show patterns which a random walk with drift is highly unlikely to generate. In fact, historical mortality trends often appear to be trend stationary around piecewise linear trends with changing slopes over time (see, e.g., [P. Sweeting, “A trend-change extension of the Cairns-Blake-Dowd model”, Ann. Actuar. Sci. 5, No. 2, 143–162 (2011; doi:10.1017/S1748499511000017)] or [J. S.-H. Li et al., “Structural changes in the Lee-Carter mortality indexes: detection and implications”, N. Am. Actuar. J. 15, No. 1, 13–31 (2011; doi:10.1080/10920277.2011.10597607)]). Periods of lower (but rather constant) mortality improvements are followed by periods of higher improvements and vice versa.
In this paper, we propose an alternative trend process which builds on the patterns observed in the historical data. Future trend changes occur randomly over time, and also the trend change magnitude is stochastic. Furthermore, we show how the parameters of this trend process, in particular the probability of observing a trend change in a certain year and the distribution for the trend change magnitude, can be estimated from historical data. We also outline how uncertainty in the parameter estimates can be accounted for. Finally, we compare the trend process to other trend processes which have been proposed in the literature.


91B30 Risk theory, insurance (MSC2010)
62P05 Applications of statistics to actuarial sciences and financial mathematics


Human Mortality
Full Text: DOI


[1] Bai, J.; Perron, P., Estimating and testing linear models with multiple structural changes, Econometrica, 66, 1, 47-78, (1998) · Zbl 1056.62523
[2] Bai, J.; Perron, P., Computation and analysis of multiple structural change models, J. Appl. Econometrics, 18, 1, 1-22, (2003)
[3] Berkum, F. v.; Antonio, K.; Vellekoop, M., The impact of multiple structural changes on mortality predictions, Scand. Actuar. J., 2016, 7, 581-603, (2014) · Zbl 1401.91221
[4] Booth, H.; Maindonald, J.; Smith, L., Applying Lee-Carter under conditions of variable mortality decline, Popul. Stud., 56, 3, 325-336, (2002)
[5] Börger, M.; Fleischer, D.; Kuksin, N., Modeling the mortality trend under modern solvency regimes, ASTIN Bull., 44, 1, 1-38, (2014)
[6] Burnham, K. P.; Anderson, D. R., Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, (2002), Springer Science & Business Media · Zbl 1005.62007
[7] Cairns, A. J.; Blake, D.; Dowd, K., A two-factor model for stochastic mortality with parameter uncertainty: theory and calibration, J. Risk Insurance, 73, 4, 687-718, (2006)
[8] Chan, W.-S.; Li, J. S.-H.; Li, J., The CBD mortality indexes: modeling and applications, N. Am. Actuar. J., 18, 1, 38-58, (2014) · Zbl 1412.91037
[9] Chow, G. C., Tests of equality between sets of coefficients in two linear regressions, Econometrica, 28, 3, 591-605, (1960) · Zbl 0099.14304
[10] Coelho, E.; Nunes, L. C., Forecasting mortality in the event of a structural change, J. Roy. Statist. Soc. Ser. A, 174, 3, 713-736, (2011)
[11] Durbin, J.; Watson, G. S., Testing for serial correlation in least squares regression. I, Biometrika, 37, 3-4, 409-428, (1950) · Zbl 0039.35803
[12] Durbin, J.; Watson, G. S., Testing for serial correlation in least squares regression. II, Biometrika, 38, 1-2, 159-177, (1951) · Zbl 0042.38201
[13] Hainaut, D., Multidimensional Lee-Carter model with switching mortality processes, Insurance Math. Econom., 50, 2, 236-246, (2012) · Zbl 1235.91091
[14] Harris, D.; Harvey, D. I.; Leybourne, S. J.; Taylor, A., Testing for a unit root in the presence of a possible break in trend, Econometric Theory, 25, 6, 1545-1588, (2009) · Zbl 1179.62120
[15] Harvey, D. I.; Leybourne, S. J.; Taylor, A., Simple, robust, and powerful tests of the breaking trend hypothesis, Econometric Theory, 25, 4, 995-1029, (2009) · Zbl 1278.62135
[16] Human Mortality Database. 2015. University of California, Berkeley (USA) and Max Planck Institute for Demographic Research (Germany). Available at www.mortality.org or www.humanmortality.de (data downloaded on 22.12.15).
[17] Hunt, A.; Blake, D., A general procedure for constructing mortality models, N. Am. Actuar. J., 18, 1, 116-138, (2014) · Zbl 1412.91045
[18] Hunt, A., Blake, D. (2015). Modelling mortality and longevity risk management - chapter 4: Consistent mortality projections allowing for trend changes and cohort effects. Doctoral thesis, Cass Business School.
[19] Jarner, S. F.; Kryger, E. M., Modelling adult mortality in small populations: the saint model, ASTIN Bull., 41, 2, 377-418, (2011) · Zbl 1239.91128
[20] Koissi, M.-C.; Shapiro, A. F.; Högnäs, G., Evaluating and extending the Lee-Carter model for mortality forecasting: bootstrap confidence interval, Insurance Math. Econom., 38, 1, 1-20, (2006) · Zbl 1098.62138
[21] Lee, R. D.; Carter, L. R., Modeling and forecasting U.S. mortality, J. Amer. Statist. Assoc., 87, 419, 659-671, (1992) · Zbl 1351.62186
[22] Lee, R. D.; Miller, T., Evaluating the performance of the Lee-Carter method for forecasting mortality, Demography, 38, 4, 537-549, (2001)
[23] Lemoine, K., Mortality regimes and longevity risk in a life annuity portfolio, Scandinavian Actuarial Journal, 2015, 8, 689-724, (2014) · Zbl 1401.91163
[24] Li, J. S.-H.; Chan, W.-S.; Cheung, S.-H., Structural changes in the Lee-Carter mortality indexes: detection and implications, N. Am. Actuar. J., 15, 1, 13-31, (2011)
[25] Li, N.; Lee, R. D., Coherent mortality forecasts for a group of populations: an extension of the Lee-Carter method, Demography, 42, 3, 575-594, (2005)
[26] Milidonis, A.; Lin, Y.; Cox, S. H., Mortality regimes and pricing, N. Am. Actuar. J., 15, 2, 266-289, (2011) · Zbl 1228.91043
[27] Muggeo, V. M., Estimating regression models with unknown break-points, Stat. Med., 22, 19, 3055-3071, (2003)
[28] Muggeo, V. M.; Adelfio, G., Efficient change point detection for genomic sequences of continuous measurements, Bioinformatics, 27, 2, 161-166, (2011)
[29] O’Hare, C.; Li, Y., Identifying structural breaks in stochastic mortality models, ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering, 1, 2, (2015)
[30] Plat, R., On stochastic mortality modeling, Insurance Math. Econom., 45, 3, 393-404, (2009) · Zbl 1231.91227
[31] Ploberger, W.; Krämer, W., The CUSUM test with OLS residuals, Econometrica, 60, 2, 271-285, (1992) · Zbl 0744.62155
[32] Richards, S.; Currie, I.; Ritchie, G., A value-at-risk framework for longevity trend risk, British Actuar. J., 19, 1, 116-139, (2014)
[33] Sweeting, P., A trend-change extension of the Cairns-blake-dowd model, Ann. Actuar. Sci., 5, 2, 143-162, (2011)
[34] Wang, H.; Li, B.; Leng, C., Shrinkage tuning parameter selection with a diverging number of parameters, J. R. Stat. Soc. Ser. B Stat. Methodol., 71, 3, 671-683, (2009) · Zbl 1250.62036
[35] Zivot, E.; Andrews, D. W.K., Further evidence on the great crash, the oil-price shock, and the unit-root hypothesis, J. Bus. Econom. Statist., 10, 3, 251-270, (1992)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.