×

A second order operator splitting method for Allen-Cahn type equations with nonlinear source terms. (English) Zbl 1400.82256

Summary: Allen-Cahn (AC) type equations with nonlinear source terms have been applied to a wide range of problems, for example, the vector-valued AC equation for phase separation and the phase-field equation for dendritic crystal growth. In contrast to the well developed first and second order methods for the AC equation, not many second order methods are suggested for the AC type equations with nonlinear source terms due to the difficulties in dealing with the nonlinear source term numerically. In this paper, we propose a simple and stable second order operator splitting method. A core idea of the method is to decompose the original equation into three subequations with the free-energy evolution term, the heat evolution term, and a nonlinear source term, respectively. It is important to combine these three subequations in proper order to achieve the second order accuracy and stability. We propose a method with a half-time free-energy evolution solver, a half-time heat evolution solver, a full-time midpoint solver for the nonlinear source term, and a half-time heat evolution solver followed by a final half-time free-energy evolution solver. We numerically demonstrate the second order accuracy of the new numerical method through the simulations of the phase separation and the dendritic crystal growth.

MSC:

82C80 Numerical methods of time-dependent statistical mechanics (MSC2010)
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
35Q82 PDEs in connection with statistical mechanics
82D25 Statistical mechanics of crystals
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Allen, S. M.; Cahn, J. W., A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall., 27, 1085-1095 (1979)
[2] Fife, P. C., Models for phase separation and their mathematics, Electron. J. Differential Equations, 2000, 1-26 (2000) · Zbl 0957.35062
[3] Eyre, D. J., An unconditionally stable one-step scheme for gradient systems
[4] Eyre, D. J., Unconditionally gradient stable time marching the Cahn-Hilliard equation, (Computational and Mathematical Models of Microstructural Evolution (1998), The Material Research Society: The Material Research Society Warrendale, PA), 39-46
[5] Choi, J.-W.; Lee, H. G.; Jeong, D.; Kim, J., An unconditionally gradient stable numerical method for solving the Allen-Cahn equation, Physica A, 388, 1791-1803 (2009)
[6] Kessler, D.; Nochetto, R. H.; Schmidt, A., A posteriori error control for the Allen-Cahn problem: circumventing Gronwall’s inequality, ESAIM: M2AN, 38, 129-142 (2004) · Zbl 1075.65117
[7] Shen, J.; Yang, X., An efficient moving mesh spectral method for the phase-field model of two-phase flows, J. Comput. Phys., 228, 2978-2992 (2009) · Zbl 1159.76032
[8] Yang, X., Error analysis of stabilized semi-implicit method of Allen-Cahn equation, Discrete Contin. Dyn. B, 11, 1057-1070 (2009) · Zbl 1201.65170
[9] Shen, J.; Yang, X., Numerical approximations of Allen-Cahn and Cahn-Hilliard equations, Discrete Contin. Dyn. A, 28, 1669-1691 (2010) · Zbl 1201.65184
[10] Li, Y.; Lee, H. G.; Jeong, D.; Kim, J., An unconditionally stable hybrid numerical method for solving the Allen-Cahn equation, Comput. Math. Appl., 60, 1591-1606 (2010) · Zbl 1202.65112
[11] Lee, H. G.; Lee, J.-Y., A semi-analytical Fourier spectral method for the Allen-Cahn equation, Comput. Math. Appl., 68, 174-184 (2014) · Zbl 1369.65128
[12] Strang, G., On the construction and comparison of difference schemes, SIAM J. Numer. Anal., 5, 506-517 (1968) · Zbl 0184.38503
[13] Goldman, D.; Kaper, T. J., \(N\) th-order operator splitting schemes and nonreversible systems, SIAM J. Numer. Anal., 33, 349-367 (1996) · Zbl 0849.65070
[16] Kobayashi, R., Modeling and numerical simulations of dendritic crystal growth, Physica D, 63, 410-423 (1993) · Zbl 0797.35175
[17] Karma, A.; Rappel, W.-J., Quantitative phase-field modeling of dendritic growth in two and three dimensions, Phys. Rev. E, 57, 4323-4349 (1998) · Zbl 1086.82558
[18] Boettinger, W. J.; Warren, J. A.; Beckermann, C.; Karma, A., Phase-field simulation of solidification, Annu. Rev. Mater. Sci., 32, 163-194 (2002)
[19] Li, Y.; Lee, H. G.; Kim, J., A fast, robust, and accurate operator splitting method for phase-field simulations of crystal growth, J. Cryst. Growth, 321, 176-182 (2011)
[20] Steinbach, I.; Pezzolla, F.; Nestler, B.; Seeßelberg, M.; Prieler, R.; Schmitz, G. J.; Rezende, J. L.L., A phase field concept for multiphase systems, Physica D, 94, 135-147 (1996) · Zbl 0885.35148
[21] Fan, D.; Chen, L.-Q., Computer simulation of grain growth using a continuum field model, Acta Mater., 45, 611-622 (1997)
[22] Kobayashi, R.; Warren, J. A.; Carter, W. C., A continuum model of grain boundaries, Physica D, 140, 141-150 (2000) · Zbl 0956.35123
[23] Krill, C. E.; Chen, L.-Q., Computer simulation of 3-D grain growth using a phase-field model, Acta Mater., 50, 3057-3073 (2002)
[24] Ramanarayan, H.; Abinandanan, T. A., Spinodal decomposition in poly-crystalline alloys, Physica A, 318, 213-219 (2003) · Zbl 1008.82501
[25] Beneš, M.; Chalupecký, V.; Mikula, K., Geometrical image segmentation by the Allen-Cahn equation, Appl. Numer. Math., 51, 187-205 (2004) · Zbl 1055.94502
[26] Esedog¯lu, S.; Tsai, Y.-H. R., Threshold dynamics for the piecewise constant Mumford-Shah functional, J. Comput. Phys., 211, 367-384 (2006) · Zbl 1086.65522
[27] Kay, D. A.; Tomasi, A., Color image segmentation by the vector-valued Allen-Cahn phase-field model: a multigrid solution, IEEE Trans. Image Process., 18, 2330-2339 (2009) · Zbl 1371.94190
[28] Li, Y.; Kim, J., Multiphase image segmentation using a phase-field model, Comput. Math. Appl., 62, 737-745 (2011) · Zbl 1228.94009
[29] Evans, L. C.; Soner, H. M.; Souganidis, P. E., Phase transitions and generalized motion by mean curvature, Comm. Pure Appl. Math., 45, 1097-1123 (1992) · Zbl 0801.35045
[30] Ilmanen, T., Convergence of the Allen-Cahn equation to Brakke’s motion by mean curvature, J. Differential Geom., 38, 417-461 (1993) · Zbl 0784.53035
[31] Katsoulakis, M.; Kossioris, G. T.; Reitich, F., Generalized motion by mean curvature with Neumann conditions and the Allen-Cahn model for phase transitions, J. Geom. Anal., 5, 255-279 (1995) · Zbl 0827.35003
[32] Beneš, M.; Mikula, K., Simulation of anisotropic motion by mean curvature—comparison of phase-field and sharp-interface approaches, Acta Math. Univ. Comenian., 67, 17-42 (1998) · Zbl 0963.80004
[33] Feng, X.; Prohl, A., Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows, Numer. Math., 94, 33-65 (2003) · Zbl 1029.65093
[34] Yang, X.; Feng, J. J.; Liu, C.; Shen, J., Numerical simulations of jet pinching-off and drop formation using an energetic variational phase-field method, J. Comput. Phys., 218, 417-428 (2006) · Zbl 1158.76319
[35] Du, Q.; Liu, C.; Wang, X., A phase field approach in the numerical study of the elastic bending energy for vesicle membranes, J. Comput. Phys., 198, 450-468 (2004) · Zbl 1116.74384
[36] Du, Q.; Liu, C.; Wang, X., Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions, J. Comput. Phys., 212, 757-777 (2006) · Zbl 1086.74024
[37] Kornhuber, R.; Krause, R., Robust multigrid methods for vector-valued Allen-Cahn equations with logarithmic free energy, Comput. Vis. Sci., 9, 103-116 (2006) · Zbl 1511.65100
[38] Lee, H. G.; Kim, J., An efficient and accurate numerical algorithm for the vector-valued Allen-Cahn equations, Comput. Phys. Comm., 183, 2107-2115 (2012) · Zbl 1298.65144
[39] Ahmed, N.; Natarajan, T.; Rao, K. R., Discrete cosine transform, IEEE Trans. Comput., C-23, 90-93 (1974) · Zbl 0273.65097
[40] Garcke, H.; Nestler, B.; Stoth, B., On anisotropic order parameter models for multi-phase systems and their sharp interface limits, Physica D, 115, 87-108 (1998) · Zbl 0936.82010
[41] Garcke, H.; Styles, V., Bi-directional diffusion induced grain boundary motion with triple junctions, Interfaces Free Bound., 6, 271-294 (2004) · Zbl 1081.35116
[42] Rosam, J.; Jimack, P. K.; Mullis, A., A fully implicit, fully adaptive time and space discretisation method for phase-field simulation of binary alloy solidification, J. Comput. Phys., 225, 1271-1287 (2007) · Zbl 1343.80012
[43] Caginalp, G., Stefan and Hele-Shaw type models as asymptotic limits of the phase-field equations, Phys. Rev. A, 39, 5887-5896 (1989) · Zbl 1027.80505
[44] Langer, J. S., Models of pattern formation in first-order phase transitions, (Grinstein, G.; Mazenko, G., Directions in Condensed Matter Physics (1986), World Scientific: World Scientific Singapore), 165-186
[45] Karma, A.; Rappel, W.-J., Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics, Phys. Rev. E, 53, R3017-R3020 (1996)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.