×

zbMATH — the first resource for mathematics

Optimal decay of Wannier functions in Chern and quantum Hall insulators. (English) Zbl 1400.82249
The paper aims to contribute to the understanding of some transport properties of quantum systems out of equilibrium. For instance, it tries to explain the conductivity properties of solids, starting from some basic properties. To this end, one analyzes the rate of the decay of composite of the Wannier functions associate to the grapped periodic Hamiltonian of the system. The results, which deal with a kind of localization dichotomy, are stated in terms of families of projectors which characterize crystals. Loosely speaking, the mathematics of the paper turns around composite Wannier functions.

MSC:
82C70 Transport processes in time-dependent statistical mechanics
81V70 Many-body theory; quantum Hall effect
82D10 Statistical mechanical studies of plasmas
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bestwick, A.J.; Fox, E.J.; Kou, X.; Pan, L.; Wang, K.L.; Goldhaber-Gordon, D., Precise quantization of the anomalous Hall effect near zero magnetic field, Phys. Rev. Lett., 114, 187201, (2015)
[2] Birman, S.H., Suslina, T.A.: Periodic magnetic Hamiltonian with a variable metric. The problem of absolute continuity. Algebra i Analiz 11(2), 1-40 (1999); English translation in St. Petersburg Math. J. 11(2), 1-30 (2000) · Zbl 0941.35015
[3] Blount, E.I.: Formalism of band theory. In: Seitz, F., Turnbull, D. (eds.) Solid State Physics 13, pp. 305-373, Academic Press, Cambridge (1962)
[4] Brouder, Ch.; Panati, G.; Calandra, M.; Mourougane, Ch.; Marzari, N., Exponential localization of Wannier functions in insulators, Phys. Rev. Lett., 98, 046402, (2007)
[5] Cancès, É.; Levitt, A.; Panati, G.; Stoltz, G., Robust determination of maximally-localized Wannier functions, Phys. Rev. B, 95, 075114, (2017)
[6] Chang, C.Z. et al.: High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator. Nat. Mater. 14, 473 (2015)
[7] des Cloizeaux, J., Energy bands and projection operators in a crystal: analytic and asymptotic properties, Phys. Rev., 135, a685-a697, (1964)
[8] des Cloizeaux, J., Analytical properties of n-dimensional energy bands and Wannier functions, Phys. Rev., 135, a698-a707, (1964)
[9] Cornean, H.D.; Herbst, I.; Nenciu, G., On the construction of composite Wannier functions, Ann. Henri Poincaré, 17, 3361-3398, (2016) · Zbl 1357.82069
[10] Dana, I.; Zak, J., Adams representation and localization in a magnetic field, Phys. Rev. B, 28, 811, (1983)
[11] Dubrovin, B.A., Novikov, S.P., Fomenko, A.T.: Modern geometry-methods and applications. Part II: The Geometry and Topology of Manifolds. No. 93 in Graduate Texts in Mathematics. Springer-Verlag, New York (1985)
[12] Fiorenza, D.; Monaco, D.; Panati, G., Construction of real-valued localized composite Wannier functions for insulators, Ann. Henri Poincaré, 17, 63-97, (2016) · Zbl 1338.82057
[13] Fiorenza, D., Monaco, D., Panati, G.: \({{\mathbb{Z}}_2}\) invariants of topological insulators as geometric obstructions. Commun. Math. Phys. 343, 1115-1157 (2016) · Zbl 1346.81158
[14] Freund, S.; Teufel, S., Peierls substitution for magnetic Bloch bands, Anal. PDE, 9, 773-811, (2016) · Zbl 1343.81088
[15] Giuliani, A.; Mastropietro, V.; Porta, M., Universality of the Hall conductivity in interacting electron systems, Commun. Math. Phys., 349, 1107-1161, (2016) · Zbl 1358.81178
[16] Guillemin V., Pollack A.: Differential Topology. American Mathematical Society, Providence (1974) · Zbl 0361.57001
[17] Haldane, F.D.M., Model for a quantum Hall effect without Landau levels: condensed-matter realization of the “parity anomaly”, Phys. Rev. Lett., 61, 2017, (1988)
[18] Hang, F.; Lin, F.H., Topology of Sobolev mappings. II, Acta Math., 191, 55-107, (2003) · Zbl 1061.46032
[19] Hasan, M.Z.; Kane, C.L., Colloquium: topological insulators, Rev. Mod. Phys., 82, 3045-3067, (2010)
[20] Helffer, B., Sjöstrand, J.: Équation de Schrödinger avec champ magnétique et équation de Harper. In: Holden, H., Jensen, A. (eds.) Schrödinger Operators, pp. 118-197, Lecture Notes in Physics 345, Springer, Berlin (1989) · Zbl 0699.35189
[21] Hofstadter, D.R., Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields, Phys. Rev. B, 14, 2239-2249, (1976)
[22] Husemoller, D.: Fibre Bundles, 3rd edn. No. 20 in Graduate Texts in Mathematics. Springer, New York (1994) · Zbl 0794.55001
[23] Kato T.: Perturbation Theory for Linear Operators. Springer, Berlin (1966) · Zbl 0148.12601
[24] Kato, T., Schrödinger operators with singular potentials, Israel J. Math., 13, 135-148, (1972) · Zbl 0246.35025
[25] Kohn, W., Analytic properties of Bloch waves and Wannier functions, Phys. Rev., 115, 809, (1959) · Zbl 0086.45101
[26] Kuchment, P., An overview of periodic elliptic operators, Bull. AMS, 53, 343-414, (2016) · Zbl 1346.35170
[27] Lieb, E.H., Loss, M.: Analysis, 2nd edn. No. 14 in Graduate Studies in Mathematics. American Mathematical Society, Providence (2001)
[28] Marzari, N.; Vanderbilt, D., Maximally localized generalized Wannier functions for composite energy bands, Phys. Rev. B, 56, 12847-12865, (1997)
[29] Marzari, N.; Mostofi, A.A.; Yates, J.R.; Souza, I.; Vanderbilt, D., Maximally localized Wannier functions: theory and applications, Rev. Mod. Phys., 84, 1419, (2012)
[30] Monaco, D.: Chern and Fu-Kane-Mele invariants as topological obstructions. Chapter 12. In: Dell’Antonio, G., Michelangeli, A. (eds.) Advances in QuantumMechanics: Contemporary Trends and Open Problems, vol. 18. Springer INdAM Series (2017) · Zbl 1374.81101
[31] Monaco, D.; Panati, G., Symmetry and localization in periodic crystals: triviality of Bloch bundles with a fermionic time-reversal symmetry, Acta App. Math., 137, 185-203, (2015) · Zbl 1318.82045
[32] Nenciu, G., Existence of the exponentially localised Wannier functions, Commun. Math. Phys., 91, 81-85, (1983) · Zbl 0545.47012
[33] Nenciu, G., Dynamics of band electrons in electric and magnetic fields: rigorous justification of the effective Hamiltonians, Rev. Mod. Phys., 63, 91-127, (1991)
[34] Nenciu, A.; Nenciu, G., Dynamics of Bloch electrons in external electric fields. II. the existence of Stark-Wannier ladder resonances, J. Phys. A, 15, 3313-3328, (1982)
[35] Panati, G., Triviality of Bloch and Bloch-Dirac bundles, Ann. Henri Poincaré, 8, 995-1011, (2007) · Zbl 1375.81102
[36] Panati, G.; Pisante, A., Bloch bundles, marzari-vanderbilt functional and maximally localized Wannier functions, Commun. Math. Phys., 322, 835-875, (2013) · Zbl 1277.82057
[37] Panati, G.; Spohn, H.; Teufel, S., Effective dynamics for Bloch electrons: Peierls substitution and beyond, Commun. Math. Phys., 242, 547-578, (2003) · Zbl 1058.81020
[38] Peotta, S.; Törma, P., Superfluidity in topologically nontrivial flat bands, Nat. Commun., 8, 8944, (2015)
[39] Rashba, E.I.; Zhukov, L.E.; Efros, A.L., Orthogonal localized wave functions of an electron in a magnetic field, Phys. Rev. B, 55, 5306, (1997)
[40] Reed M., Simon B.: Methods of Modern Mathematical Physics. Volume IV: Analysis of Operators. Academic Press, New York (1978) · Zbl 0401.47001
[41] Read, N., Compactly-supported Wannier functions and algebraic \(K\)-theory, Phys. Rev. B, 95, 115309, (2017)
[42] Resta, R.: Geometry and topology in electronic structure physics. Lecture Notes. http://www-dft.ts.infn.it/ resta/gtse/draft.pdf (2016) · Zbl 0072.32402
[43] Runst T., Sickel W.: Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations. Walter de Gruyter, Berlin (1996) · Zbl 0873.35001
[44] Stein, E.M., Interpolation of linear operators, Trans. Am. Math. Soc., 83, 482-492, (1956) · Zbl 0072.32402
[45] Thonhauser, T.; Vanderbilt, D., Insulator/Chern-insulator transition in the Haldane model, Phys. Rev. B, 74, 235111, (2006)
[46] Thouless, D.J., Wannier functions for magnetic sub-bands, J. Phys. C, 17, l325-l327, (1984)
[47] Thouless, D.J.; Kohmoto, M.; Nightingale, M.P.; den Nijs, M., Quantized Hall conductance in a two-dimensional periodic potential, Phys. Rev. Lett., 49, 405-408, (1982)
[48] Tovmasyan, M.; Peotta, S.; Törma, P.; Huber, S.D., Effective theory and emergent SU(2) symmetry in the flat bands of attractive Hubbard models, Phys. Rev. B, 94, 245149, (2016)
[49] Zak, J., Magnetic translation group, Phys. Rev., 134, a1602, (1964) · Zbl 0131.45404
[50] Zak, J., Identities for Landau level orbitals, Europhys. Lett., 17, 443, (1992)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.