×

Ordering quantum states and channels based on positive Bayesian evidence. (English) Zbl 1400.81021

Summary: In this paper, we introduce a new partial order on quantum states that considers which states can be achieved from others by updating on “agreeing” Bayesian evidence. We prove that this order can also be interpreted in terms of minimising worst case distinguishability between states using the concept of quantum max-divergence. This order solves the problem of which states are optimal approximations to their more pure counterparts, and it shows in an explicit way that a proposed quantum analog of Bayes’ rule leads to a Bayesian update that changes the state as little as possible when updating on positive evidence. We prove some structural properties of the order, specifically that the order preserves convex mixtures and tensor products of states and that it is a domain. The uniqueness of the order given these properties is discussed. Finally we extend this order on states to one on quantum channels using the Jamiołkowski isomorphism. This order turns the spaces of unital/non-unital trace-preserving quantum channels into domains that, unlike the regular order on channels, is not trivial for unital trace-preserving channels.{
©2018 American Institute of Physics}

MSC:

81P16 Quantum state spaces, operational and probabilistic concepts
62F15 Bayesian inference
81P50 Quantum state estimation, approximate cloning
94A40 Channel models (including quantum) in information and communication theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Alberti, P. M.; Uhlmann, A., Stochasticity and Partial Order, (1982), Deutscher Verlag der Wissenschaften · Zbl 0474.46047
[2] Arveson, W. B., Subalgebras of c*-algebras, Acta Math., 123, 1, 141-224, (1969) · Zbl 0194.15701 · doi:10.1007/bf02392388
[3] Chiribella, G.; Ebler, D., Optimal quantum networks and one-shot entropies, New J. Phys., 18, 9, 093053, (2016) · doi:10.1088/1367-2630/18/9/093053
[4] Cho, K., Semantics for a quantum programming language by operator algebras, New Gener. Comput., 34, 1-2, 25-68, (2016) · Zbl 1443.68041 · doi:10.1007/s00354-016-0204-3
[5] Coecke, B.; Martin, K., A partial order on classical and quantum states, New Structures for Physics, 593-683, (2010), Springer Nature · Zbl 1253.81008
[6] Datta, N., Min-and max-relative entropies and a new entanglement monotone, IEEE Trans. Inf. Theory, 55, 6, 2816-2826, (2009) · Zbl 1367.81021 · doi:10.1109/tit.2009.2018325
[7] Fuchs, C. A., Quantum mechanics as quantum information (and only a little more), (2002)
[8] Gierz, G.; Hofmann, K. H.; Keimel, K.; Lawson, J. D.; Mislove, M.; Scott, D. S., Continuous Lattices and Domains, (2003), Cambridge University Press
[9] Jacobs, B.; Coecke, B.; Kissinger, A., Lower and upper conditioning in quantum Bayesian theory, (2018), Open Publishing Association
[10] Jiang, M.; Luo, S.; Fu, S., Channel-state duality, Phys. Rev. A, 87, 022310, (2013) · doi:10.1103/physreva.87.022310
[11] Leifer, M. S.; Spekkens, R. W., Towards a formulation of quantum theory as a causally neutral theory of Bayesian inference, Phys. Rev. A, 88, 5, 052130, (2013) · doi:10.1103/physreva.88.052130
[12] Martin, K., A Foundation for Computation, (2000), Tulane University: Tulane University, New Orleans, LA
[13] Martin, K., A domain theoretic model of qubit channels, Automata, Languages and Programming, 283-297, (2008), Springer Nature · Zbl 1155.68387
[14] Mosonyi, M.; Hiai, F., On the quantum Rényi relative entropies and related capacity formulas, IEEE Trans. Inf. Theory, 57, 4, 2474-2487, (2011) · Zbl 1366.81102 · doi:10.1109/tit.2011.2110050
[15] Mosonyi, M.; Ogawa, T., Quantum hypothesis testing and the operational interpretation of the quantum Rényi relative entropies, Commun. Math. Phys., 334, 3, 1617-1648, (2014) · Zbl 1308.81051 · doi:10.1007/s00220-014-2248-x
[16] Müller-Lennert, M.; Dupuis, F.; Szehr, O.; Fehr, S.; Tomamichel, M., On quantum Rényi entropies: A new generalization and some properties, J. Math. Phys., 54, 12, 122203, (2013) · Zbl 1290.81016 · doi:10.1063/1.4838856
[17] The QPE order is actually an example of a pospace: The graph induced by the order is closed in the space DO(n) × DO(n).
[18] In the language of category theory: That the order structure is an enrichment of the category.
[19] The paper5 introducing the spectral order proves the domain property on a mistaken assumption. A concrete counter-example showing that it is not a domain is given in the author’s Master thesis.22
[20] Reeb, D.; Kastoryano, M. J.; Wolf, M. M., Hilbert’s projective metric in quantum information theory, J. Math. Phys., 52, 8, 082201, (2011) · Zbl 1272.81033 · doi:10.1063/1.3615729
[21] van de Wetering, J., Entailment relations on distributions, Electron. Proc. Theor. Comput. Sci., 221, 58-66, (2016) · doi:10.4204/eptcs.221.7
[22] van de Wetering, J., Ordering information on distributions, (2016), Radboud University
[23] Verstraete, F.; Verschelde, H., On quantum channels, (2002)
[24] Wilde, M. M.; Winter, A.; Yang, D., Strong converse for the classical capacity of entanglement-breaking and hadamard channels via a sandwiched Rényi relative entropy, Commun. Math. Phys., 331, 2, 593-622, (2014) · Zbl 1303.81042 · doi:10.1007/s00220-014-2122-x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.