×

zbMATH — the first resource for mathematics

Energy stable schemes for Cahn-Hilliard phase-field model of two-phase incompressible flows. (English) Zbl 1400.65049
Summary: Numerical approximations of Cahn-Hilliard phase-field model for the two-phase incompressible flows are considered in this paper. Several efficient and energy stable time discretization schemes for the coupled nonlinear Cahn-Hilliard phase-field system for both the matched density case and the variable density case are constructed, and are shown to satisfy discrete energy laws which are analogous to the continuous energy laws.

MSC:
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
35K55 Nonlinear parabolic equations
76D05 Navier-Stokes equations for incompressible viscous fluids
80A22 Stefan problems, phase changes, etc.
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Allen, S. M. and Cahn, J. W., A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. Mater., 27, 1979, 1085–1095. · doi:10.1016/0001-6160(79)90196-2
[2] Anderson, D. M., McFadden, G. B. and Wheeler, A. A., Diffuse-interface methods in fluid mechanics, 30, 1998, 139–165. · Zbl 1398.76051
[3] Becker, R., Feng, X. and Prohl, A., Finite element approximations of the Ericksen-Leslie model for nematic liquid crystal flow, SIAM J. Numer. Anal., 46(4), 2008, 1704–1731. · Zbl 1187.82130 · doi:10.1137/07068254X
[4] Caffarelli, L. A. and Muler, N. E., An L bound for solutions of the Cahn-Hilliard equation, Arch. Rational Mech. Anal., 133(2), 1995, 129–144. · Zbl 0851.35010 · doi:10.1007/BF00376814
[5] Cahn, J. W. and Hilliard, J. E., Free energy of a nonuniform system, I: Interfacial free energy, J. Chem. Phys., 28, 1958, 258–267. · doi:10.1063/1.1744102
[6] Condette, N., Melcher, C. and Süli, E., Spectral approximation of pattern-forming nonlinear evolution equations with double-well potentials of quadratic growth, Math. Comp., to appear. · Zbl 1209.65066
[7] Feng, X., He, Y. and Liu, C., Analysis of finite element approximations of a phase field model for two-phase fluids (electronic), Math. Comp., 76(258), 2007, 539–571. · Zbl 1111.76028 · doi:10.1090/S0025-5718-06-01915-6
[8] Guermond, J. L., Minev, P. and Shen, J., An overview of projection methods for incompressible flows, Comput. Methods Appl. Mech. Engrg., 195, 2006, 6011–6045. · Zbl 1122.76072 · doi:10.1016/j.cma.2005.10.010
[9] Guermond, J. L. and Quartapelle, L., A projection FEM for variable density incompressible flows, J. Comput. Phys., 165(1), 2000, 167–188. · Zbl 0994.76051 · doi:10.1006/jcph.2000.6609
[10] Guermond, J. L. and Salgado, A., A splitting method for incompressible flows with variable density based on a pressure Poisson equation, J. Comput. Phys., 228(8), 2009, 2834–2846. · Zbl 1159.76028 · doi:10.1016/j.jcp.2008.12.036
[11] Gurtin, M. E., Polignone, D. and Vinals, J., Two-phase binary fluids and immiscible fluids described by an order parameter, Math. Models Methods Appl. Sci., 6(6), 1996, 815–831. · Zbl 0857.76008 · doi:10.1142/S0218202596000341
[12] Jacqmin, D., Diffuse interface model for incompressible two-phase flows with large density ratios, J. Comput. Phys., 155(1), 2007, 96–127. · Zbl 0966.76060 · doi:10.1006/jcph.1999.6332
[13] Kessler, D., Nochetto, R. H. and Schmidt, A., A posteriori error control for the Allen-Cahn problem: circumventing Gronwall’s inequality, M2AN Math. Model. Numer. Anal., 38(1), 2004, 129–142. · Zbl 1075.65117 · doi:10.1051/m2an:2004006
[14] Lin, P., Liu, C. and Zhang, H., An energy law preserving C 0 finite element scheme for simulating the kinematic effects in liquid crystal dynamics, J. Comput. Phys., 227(2), 2007, 1411–1427. · Zbl 1133.65077 · doi:10.1016/j.jcp.2007.09.005
[15] Liu, C. and Shen, J., A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method, Physica D, 179(3–4), 2003, 211–228. · Zbl 1092.76069 · doi:10.1016/S0167-2789(03)00030-7
[16] Lowengrub, J. and Truskinovsky, L., Quasi-incompressible Cahn-Hilliard fluids and topological transitions, R. Soc. Lond. Proc., Ser. A, Math. Phys. Eng. Sci., 454(1978), 1998, 2617–2654. · Zbl 0927.76007 · doi:10.1098/rspa.1998.0273
[17] Nochetto, R. and Pyo, J. H., The gauge-Uzawa finite element method part I: the Navier-Stokes equations, SIAM J. Numer. Anal., 43, 2005, 1043–1068. · Zbl 1094.76041 · doi:10.1137/040609756
[18] Prohl, A., Projection and quasi-compressibility methods for solving the incompressible Navier-Stokes equations, Advances in Numerical Mathematics, BG Teubner, Stuttgart, 1997. · Zbl 0874.76002
[19] Pyo, J. and Shen, J., Gauge-uzawa methods for incompressible flows with variable density, J. Comput. Phys., 221, 2007, 181–197. · Zbl 1109.76037 · doi:10.1016/j.jcp.2006.06.013
[20] Rannacher, R., On Chorin’s projection method for the incompressible Navier-Stokes equations, Lecture Notes in Mathematics, 1530, Springer-Verlag, Berlin, 1991. · Zbl 0769.76053
[21] Shen, J., Efficient spectral-Galerkin method I. direct solvers for second- and fourth-order equations by using Legendre polynomials, SIAM J. Sci. Comput., 15, 1994, 1489–1505. · Zbl 0811.65097 · doi:10.1137/0915089
[22] Shen, J., On error estimates of projection methods for the Navier-Stokes equations: second-order schemes, Math. Comp, 65, 1996, 1039–1065. · Zbl 0855.76049 · doi:10.1090/S0025-5718-96-00750-8
[23] Shen, J. and Yang, X., A phase-field model and its numerical approximation for two-phase incompressible flows with different densities and viscosities, SIAM J. Sci. Comput., 32, 2010, 1159–1179. · Zbl 1410.76464 · doi:10.1137/09075860X
[24] Shen, J. and Yang, X., Numerical approximations of allen-cahn and cahn-hilliard equations, Discrete and Continuous Dynamical Systems, Series A, 28, 2010, 1669–1691. · Zbl 1201.65184 · doi:10.3934/dcds.2010.28.1669
[25] Walkington, N. J., Compactness properties of the DG and CG time stepping schemes for parabolic equations, SIAM J. Numer. Anal., 47(6), 2010, 4680–4710. · Zbl 1252.65169 · doi:10.1137/080728378
[26] Yue, P., Feng, J. J., Liu, C., et al., A diffuse-interface method for simulating two-phase flows of complex fluids, J. Fluid Mech, 515, 2004, 293–317. · Zbl 1130.76437 · doi:10.1017/S0022112004000370
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.