zbMATH — the first resource for mathematics

Joint temporal and contemporaneous aggregation of random-coefficient AR(1) processes. (English) Zbl 1400.62194
Summary: We discuss joint temporal and contemporaneous aggregation of \(N\) independent copies of AR(1) process with random-coefficient \(a\in [0,1)\) when \(N\) and time scale \(n\) increase at different rate. Assuming that \(a\) has a density, regularly varying at \(a=1\) with exponent \(-1<\beta <1\), different joint limits of normalized aggregated partial sums are shown to exist when \(N^{1/(1+\beta )}/n\) tends to (i) \(\infty \), (ii) 0, (iii) \(0<\mu <\infty \). The limit process arising under (iii) admits a Poisson integral representation on \((0,\infty )\times C(\mathbb R)\) and enjoys ‘intermediate’ properties between fractional Brownian motion limit in (i) and sub-Gaussian limit in (ii).

62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
60F05 Central limit and other weak theorems
Full Text: DOI
[1] Barndorff-Nielsen, O. E., Superposition of Ornstein-Uhlenbeck processes, Theory Probab. Appl., 45, 175-194, (2001) · Zbl 1003.60039
[2] Beran, J.; Feng, Y.; Gosh, S.; Kulik, R., Long-memory processes: probabilistic properties and statistical methods, (2013), Springer New York
[3] Celov, D.; Leipus, R.; Philippe, A., Time series aggregation, disaggregation and long memory, Lith. Math. J., 47, 379-393, (2007)
[4] Dombry, C.; Kaj, I., The on-off network traffic under intermediate scaling, Queueing Syst., 69, 29-44, (2011) · Zbl 1235.60121
[5] Feller, W., An introduction to probability theory and its applications, vol. 2, (1966), Wiley New York · Zbl 0138.10207
[6] Gaigalas, R., A Poisson bridge between fractional Brownian motion and stable Lévy motion, Stochastic Process. Appl., 116, 447-462, (2006) · Zbl 1087.60080
[7] Gaigalas, R.; Kaj, I., Convergence of scaled renewal processes and a packet arrival model, Bernoulli, 9, 671-703, (2003) · Zbl 1043.60077
[8] Gonçalves, E.; Gouriéroux, C., Aggrégation de processus autoregressifs d’ordre 1, Ann. Econ. Statistique, 12, 127-149, (1988)
[9] Granger, C. W.J., Long memory relationship and the aggregation of dynamic models, J. Econometrics, 14, 227-238, (1980) · Zbl 0466.62108
[10] Ibragimov, I. A.; Linnik, Yu. V., Independent and stationary sequences of random variables, (1971), Wolters-Noordhoff Groningen · Zbl 0219.60027
[11] Jørgensen, B.; Martinez, J. R.; Demetrio, C. G.B., Self-similarity and Lamperti convergence for families of stochastic processes, Lith. Math. J., 51, 342-361, (2011) · Zbl 1311.60041
[12] Kaj, I., Limiting fractal random processes in heavy-tailed systems, (Levy-Vehel, J.; Lutton, E., Fractals in Engineering, New Trends in Theory and Applications, (2005), Springer London), 199-218 · Zbl 1186.60018
[13] I. Kaj, A. Martin-Löf, Scaling limit results for the sum of many inverse Lévy subordinators, 2012, arXiv:1203.6831 [math.PR].
[14] Kaj, I.; Taqqu, M. S., Convergence to fractional Brownian motion and to the telecom process: the integral representation approach, (Vares, M. E.; Sidoravicius, V., An Out of Equilibrium 2, Progress in Probability, vol. 60, (2008), Birkhäuser Basel), 383-427 · Zbl 1154.60020
[15] Leipus, R.; Paulauskas, V.; Surgailis, D., Renewal regime switching and stable limit laws, J. Econometrics, 129, 299-327, (2005) · Zbl 1337.62195
[16] Leipus, R.; Surgailis, D., Random coefficient autoregression, regime switching and long memory, Adv. Appl. Probab., 35, 1-18, (2003) · Zbl 1044.62095
[17] Lévy, J. B.; Taqqu, M. S., Renewal reward processes with heavy-tailed interrenewal times and heavy-tailed rewards, Bernoulli, 6, 23-44, (2000) · Zbl 0954.60071
[18] Mikosch, T.; Resnick, S.; Rootzén, H.; Stegeman, A., Is network traffic approximated by stable Lévy motion or fractional Brownian motion?, Ann. Appl. Probab., 12, 23-68, (2002) · Zbl 1021.60076
[19] Oppenheim, G.; Viano, M.-C., Aggregation of random parameters Ornstein-Uhlenbeck or AR processes: some convergence results, J. Time Ser. Anal., 25, 335-350, (2004) · Zbl 1064.60066
[20] Pipiras, V.; Taqqu, M. S.; Lévy, L. B., Slow, fast, and arbitrary growth conditions for renewal reward processes when the renewals and the rewards are heavy-tailed, Bernoulli, 10, 121-163, (2004) · Zbl 1043.60040
[21] Puplinskaitė, D.; Surgailis, D., Aggregation of random coefficient AR(1) process with infinite variance and common innovations, Lith. Math. J., 49, 446-463, (2009) · Zbl 1194.60026
[22] Puplinskaitė, D.; Surgailis, D., Aggregation of random coefficient AR(1) process with infinite variance and idiosyncratic innovations, Adv. Appl. Probab., 42, 509-527, (2010) · Zbl 1191.62154
[23] D. Puplinskaitė, D. Surgailis, Aggregation of autoregressive random fields and anisotropic long memory, Preprint, 2012, http://arxiv.org/abs/1303.2209.
[24] Rajput, B. S.; Rosinski, J., Spectral representations of infinitely divisible processes, Probab. Theory Related Fields, 82, 451-487, (1989) · Zbl 0659.60078
[25] Samorodnitsky, G.; Taqqu, M. S., Stable non-Gaussian random processes, (1994), Chapman and Hall New York · Zbl 0925.60027
[26] Surgailis, D., On \(L^2\) and non-\(L^2\) multiple stochastic integration, (Arató, M.; Vermes, D.; Balakrishnan, A. V., Stochastic Differential Systems, Lect. Notes Control Inf. Sci., vol. 36, (1981), Springer-Verlag Berlin), 212-226
[27] Taqqu, M. S., Weak convergence to fractional Brownian motion and to the Rosenblatt process, Z. Wahrscheinlichkeitstheor. Verwandte Geb., 31, 287-302, (1975) · Zbl 0303.60033
[28] Taqqu, M. S.; Willinger, W.; Sherman, R., Proof of a fundamental result in self-similar traffic modeling, Comput. Commun. Rev., 27, 2, 5-23, (1997)
[29] Willinger, W.; Taqqu, M. S.; Leland, M.; Wilson, D., Self-similarity through high-variability: statistical analysis of Ethernet LAN traffic at the source level, IEEE/ACM Trans. Netw., 5, 71-86, (1997)
[30] Zaffaroni, P., Contemporaneous aggregation of linear dynamic models in large economies, J. Econometrics, 120, 75-102, (2004) · Zbl 1282.91263
[31] Zaffaroni, P., Aggregation and memory of models of changing volatility, J. Econometrics, 136, 237-249, (2007) · Zbl 1418.62360
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.