×

zbMATH — the first resource for mathematics

Nonlinear dynamics of avian influenza epidemic models. (English) Zbl 1398.92242
Summary: Avian influenza is a zoonotic disease caused by the transmission of the avian influenza A virus, such as H5N1 and H7N9, from birds to humans. The avian influenza A H5N1 virus has caused more than 500 human infections worldwide with nearly a 60% death rate since it was first reported in Hong Kong in 1997. The four outbreaks of the avian influenza A H7N9 in China from March 2013 to June 2016 have resulted in 580 human cases including 202 deaths with a death rate of nearly 35%. In this paper, we construct two avian influenza bird-to-human transmission models with different growth laws of the avian population, one with logistic growth and the other with Allee effect, and analyze their dynamical behavior. We obtain a threshold value for the prevalence of avian influenza and investigate the local or global asymptotical stability of each equilibrium of these systems by using linear analysis technique or combining Liapunov function method and LaSalle’s invariance principle, respectively. Moreover, we give necessary and sufficient conditions for the occurrence of periodic solutions in the avian influenza system with Allee effect of the avian population. Numerical simulations are also presented to illustrate the theoretical results.

MSC:
92D30 Epidemiology
37N25 Dynamical systems in biology
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Altizer, S.; Bartel, R.; Han, B. A., Animal migration and infectious disease risk, Science, 331, 296-302, (2011)
[2] Allee, W. C., Animal aggregation: A study in general sociology, (1931), University of Chicago Press Chicago
[3] Anderson, R. M.; May, R. M., Infectious diseases of humans: dynamics and control, (1991), Oxford University Press Oxford
[4] Bao, C.; Cui, L.; Zhou, M.; Hong, L.; Wang, H., Live-animal markets and influenza A (H7N9) virus infection, New Eng. J. Med., 368, 2337-2339, (2013)
[5] Bourouiba, L.; Gourley, S. A.; Liu, R.; Wu, J., The interaction of migratory birds and domestic poultry and its role in sustaining Avian influenza, SIAM J. Appl. Math., 71, 487-516, (2011) · Zbl 1231.34146
[6] Burrows, R.; Hofer, H.; East, M. L., Population dynamics, intervention and survival in african wild dogs (lycaon pictus), Proc. R. Soc. B, 262, 235-245, (1995)
[7] Cai, L.; Chen, G.; Xiao, D., Multiparametric bifurcations of an epidemiological model with strong allee effect, J. Math. Biol., 67, 185-215, (2013) · Zbl 1283.34049
[8] Centers for Disease Control and Prevention (CDC), Types of influenza virus, Retrieved January 15, 2014. http://www.cdc.gov/flu/about/viruses/types.htm.
[9] Center for Infectious Disease Research and Policy (CIDRAP), China reports three H7N9 infections, two fatal (April 1, 2013). http://www.cidrap.umn.edu/news-perspective/2013/04/china-reports-three-h7n9-infections-two-fatal.
[10] Chen, E.; Chen, Y.; Fu, L.; Chen, Z.; Gong, Z., Human infection with Avian influenza a(H7N9) virus re-emerges in China in winter 2013, Euro Surveill., 18, 43, (2013)
[11] Chen, Y.; Liang, W.; Yang, S.; Wu, N.; Gao, H., Human infections with the emerging Avian influenza a h7n9 virus from wet market poultry: clinical analysis and characterisation of viral genome, Lancet, 381, 1916-1925, (2013)
[12] Chong, N. S.; Smith, R. J., Modeling Avian influenza using Filippov systems to determine culling of infected birds and quarantine, Nonlinear Anal. Real World Appl., 24, 196-218, (2015) · Zbl 1330.34075
[13] Clifford, D. L.; Mazet, J. A.K.; Dubovi, E. J.; Garcelon, D. K.; Coonan, T. J., Pathogen exposure in endangered island fox (urocyon littoralis) populations: implications for conservation management, Biol. Conserv., 131, 230-243, (2006)
[14] Coddington, E. A.; Levinson, N., Theory of ordinary differential equations, (1955), McGraw-Hill New York · Zbl 0042.32602
[15] Coppel, W. A., Quadratic systems with a degenerate critical point, Bull. Austral. Math. Soc., 38, 1-10, (1988) · Zbl 0634.34013
[16] Coppel, W. A., A new class of quadratic systems, J. Differ. Equ., 92, 360-372, (1991) · Zbl 0733.58037
[17] Coppel, W. A., Stability of asymptotic behavior of differential equations, (1965), Heath Boston · Zbl 0154.09301
[18] de Castro, F.; Bolker, B., Mechanisms of disease induced extinction, Ecol. Lett., 8, 117-126, (2005)
[19] Diekmann, O.; Heesterbeek, J. A.P.; Roberts, M. G., The construction of next generation matrices for compartmental epidemic models, J. R. Soc. Interface, 7, 873-885, (2000)
[20] Friedman, A.; Yakubu, A.-A., Fatal disease and demographic allee effect: population persistence and extinction, J. Biol. Dyn., 6, 495-508, (2012)
[21] Friedman, A.; Yakubu, A.-A., Host demographicallee effect, fatal disease, and migration: persistence or extinction, SIAM J. Appl. Math., 72, 1644-1666, (2012) · Zbl 1273.34052
[22] Gourley, S. A.; Liu, R.; Wu, J., Spatiotemporal distributions of migratory birds: patchy models with delay, SIAM J. Appl. Dyn. Syst., 9, 589-610, (2010) · Zbl 1195.34126
[23] Guckenheimer, J.; Holmes, P., Nonlinear oscillation, dynamical systems and bifurcation of vector fields, (1983), Springer-Verlag New York
[24] Gumel, A. B., Global dynamics of a two-strain Avian influenza model, Intl. J. Comput. Math., 86, 85-108, (2009) · Zbl 1154.92032
[25] Hale, J. K., Ordinary differential equations, (1969), Wiley New York · Zbl 0186.40901
[26] Hilker, F. M.; Langlais, M.; Malchow, H., The allee effect and infectious diseases: extinction, multistability and the (dis-)appearance of oscillations, Am. Nat., 173, 72-88, (2009)
[27] Hilker, F. M.; Langlais, M.; Petrovskii, S. V.; Malchow, H., A diffusive SI model with allee effect and application to FLV, Math. Biosci., 206, 61-80, (2007) · Zbl 1124.92044
[28] Iwami, S.; Takeuchi, Y.; Liu, X., Avian-human influenza epidemic model, Math. Biosci., 207, 1-25, (2007) · Zbl 1114.92058
[29] Iwami, S.; Takeuchi, Y.; Liu, X., Avian flu pandemic: can we prevent it?, J. Theor. Biol., 257, 181-190, (2009) · Zbl 1400.92496
[30] Iwami, S.; Takeuchi, Y.; Liu, X.; Nakaoka, S., A geographical spread of vaccine-resistance in Avian influenza epidemics, J. Theor. Biol., 259, 219-228, (2009) · Zbl 1402.92277
[31] Jones, J. C.; Sonnberg, S.; Kocer, Z. A.; Shanmuganatham, K.; Seiler, P., Possible role of songbirds and parakeets in transmission of influenza a(H7N9) virus to humans, Emerg. Infect. Dis., 20, 380-385, (2014)
[32] Jones, J. C.; Sonnberg, S.; Webby, R. J.; Webster, R. G., Influenza a (H7N9) virus transmission between finches and poultry, Emerg. Infect. Dis., 21, 619-628, (2015)
[33] Jung, E.; Iwami, S.; Takeuchi, Y.; Jo, T.-C., Optimal control strategy for prevention of Avian influenza pandemic, J. Theor. Biol., 260, 220-229, (2009) · Zbl 1402.92278
[34] Kang, Y.; Castillo-Chavez, C., A simple epidemiological model for populations in the wild with allee effects and disease-modified fitness, Discrete Contin. Dyn. Syst. B, 19, 89-130, (2014) · Zbl 1287.35091
[35] Kang, Y.; Castillo-Chavez, C., Dynamics of SI models with both horizontal and vertical transmissions as well as allee effects, Math. Biosci., 248, 97-116, (2014) · Zbl 1310.92053
[36] Keeling, M. J.; Rohani, P., Modeling infectious diseases in humans and animals, (2008), Princeton University Press Princeton · Zbl 1279.92038
[37] Koopmans, M.; De Jong, M. D., Avian influenza a h7n9 in zhejiang, China, Lancet, 381, 1882-1883, (2013)
[38] Lakshmikantham, V.; Leela, S.; Martynyuk, A. A., Stability analysis of nonlinear systems, (1989), Marcel Dekker Inc. New York/Basel · Zbl 0676.34003
[39] Li, Q.; Zhou, L.; Zhou, M.; Chen, Z.; Li, F., Epidemiology of human infections with Avian influenza a (H7N9) virus in China, New Eng. J. Med., 370, 520-532, (2014)
[40] Liu, D.; Shi, W.; Shi, Y.; Wang, D.; Xiao, H., Origin and diversity of novel Avian influenza a H7N9 viruses causing human infection: phylogenetic, structural, and coalescent analyses, Lancet, 381, 1926-1932, (2013)
[41] Liu, S.; Pang, L.; Ruan, S.; Zhang, X., Global dynamics of Avian influenza epidemic models with psychological effect, Comput. Math. Methods Med., (2015) · Zbl 1344.92172
[42] Liu, S.; Ruan, S.; Zhang, X., On Avian influenza epidemic models with time delay, Theory Biosci., 134, 75-82, (2015)
[43] Lucchetti, J.; Roy, M.; Martcheva, M., An avian influenza model and its fit to human Avian influenza cases, (Tchuenche, J. M.; Mukandavire, Z., Advances in Disease Epidemiology, (2009), Nova Science Publishers New York), 1-30
[44] Ma, X.; Wang, W., A discrete model of Avian influenza with seasonal reproduction and transmission, J. Biol. Dyn., 4, 296-314, (2010) · Zbl 1342.92255
[45] National Health and Family Planning Commission of China (NHFPC), National Notifiable Disease Situation, http://en.nhfpc.gov.cn/diseases.html (in English); http://www.nhfpc.gov.cn/zhuzhan/yqxx/lists.shtml (in Chinese).
[46] Pantin-Jackwood, M. J.; Miller, P. J.; Spackman, E.; Swayne, D. E.; Susta, L.; Costa-Hurtado, M.; Suarez, D. L., Role of poultry in the spread of novel h7n9 influenza virus in China, J. Virol., 88, 5381-5390, (2014)
[47] Rappole, J. H.; Hubalek, Z., Migratory birds and west nile virus, J. Appl. Microbiol., 94, 47S-58S, (2003)
[48] Senar, J. C.; Conroy, M. J., Multi-state analysis of the impacts of Avian pox on a population of serins (serinus serinus): the importance of estimating recapture rates, Anim. Biodivers. Conserv., 27, 1-15, (2004)
[49] Serrano, D.; Oro, D.; Urua, E.; Tella, J., Colony size selection and determines adult survival and dispersal preference: allee effect in a colonial birds, Am. Nat., 166, 2, E22-E31, (2005)
[50] Skagen, S. K.; Yackel, A. A.A., Potential misuse of Avian density as a conservation metric, Conserv. Biol., 25, 48-55, (2011)
[51] Thieme, H. R.; Dhirasakdanon, T.; Han, Z.; Trevino, R., Species decline and extinction: synergy of infectious disease and allee effect?, J Biol. Dyn., 3, 305-323, (2009) · Zbl 1342.92206
[52] Tuncer, N.; Martcheva, M., Modeling seasonality in Avian influenza H5N1, J. Biol. Syst., 21, 4, 1340004, (2013) · Zbl 1342.92285
[53] Vaidya, N. K.; Wahl, L. M., Avian influenza dynamics under periodic environmental conditions, SIAM J. Appl. Math., 75, 2, 443-467, (2015) · Zbl 1323.34067
[54] van den Driessche, P.; Watmough, J., Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180, 29-48, (2002) · Zbl 1015.92036
[55] Wang, X.-S.; Wu, J., Periodic systems of delay differential equations and Avian influenza dynamics, J. Math. Sci., 201, 693-704, (2014) · Zbl 1314.34165
[56] Wikelski, M.; Foufopoulos, J.; Vargas, H.; Snell, H., Galápagos birds and diseases: invasive pathogens as threats for island species, Ecol. Soc., 9, 5, (2004)
[57] Wilcove, D. S.; Rothstein, D.; Dubow, J.; Phillips, A.; Losos, E., Quantifying threats to imperiled species in the united states, Bioscience, 48, 607-615, (1998)
[58] World Health Organization (WHO), Human infection with avian influenza A(H7N9) virus-update (February 24, 2014). http://www.who.int/csr/don/2014_-02_-24/en/.
[59] World Organization for Animal Health (OIE), OIE expert mission finds live bird markets play a key role in poultry and human infections with influenza A (H7N9). Paris (April 30, 2013). http://www.oie.int/en/for-the-media/press-releases/detail/article/oie-expert-mission-finds-live-bird-markets-play-a-key-role-in-poultry-and-human-infections-with-infl/.
[60] Zhang, J.; Feng, B., The geometric theory and bifurcation problems of ordinary differential equations, (1997), Peking University Press Beijing
[61] Zhang, Z.; Ding, T.; Huang, W.; Dong, Z., Qualitative theory of differential equations, (1985), Science Press Beijing
[62] Zhang, J.; Jin, Z.; Sun, G.; Sun, X.; Wang, Y.; Huang, B., Determination of original infection source of H7N9 Avian influenza by dynamical model, Sci. Rep., 4, 1-16, (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.