×

zbMATH — the first resource for mathematics

Three-dimensional multispecies nonlinear tumor growth. I: Model and numerical method. (English) Zbl 1398.92135
Summary: This is the first paper in a two-part series in which we develop, analyze, and simulate a diffuse interface continuum model of multispecies tumor growth and tumor-induced angiogenesis in two and three dimensions. Three-dimensional simulations of nonlinear tumor growth and neovascularization using this diffuse interface model were recently presented in [H. B. Frieboes et al., “Computer simulation of glioma growth and morphology”, NeuroImage 37, Suppl. 1, S59–S70 (2007; doi:10.1016/j.neuroimage.2007.03.008)], but that paper did not describe the details of the model or the numerical algorithm. This is done here. In this diffuse interface approach, sharp interfaces are replaced by narrow transition layers that arise due to differential adhesive forces among the cell species. Accordingly, a continuum model of adhesion is introduced. The model is thermodynamically consistent, is related to recently developed mixture models, and thus is capable of providing a detailed description of tumor progression. The model is well-posed and consists of fourth-order nonlinear advection-reaction-diffusion equations (of Cahn-Hilliard-type) for the cell species coupled with reaction-diffusion equations for the substrate components. We demonstrate analytically and numerically that when the diffuse interface thickness tends to zero, the system reduces to a classical sharp interface model. Using a new fully adaptive and nonlinear multigrid/finite difference method, the system is simulated efficiently. In this first paper, we present simulations of unstable avascular tumor growth in two and three dimensions and demonstrate that our techniques now make large-scale three-dimensional simulations of tumors with complex morphologies computationally feasible. In part II of this study, we will investigate multispecies tumor invasion, tumor-induced angiogenesis, and focus on the morphological instabilities that may underlie invasive phenotypes.

MSC:
92C50 Medical applications (general)
92C15 Developmental biology, pattern formation
35Q92 PDEs in connection with biology, chemistry and other natural sciences
PDF BibTeX Cite
Full Text: DOI
References:
[1] Abbott, R.; Forrest, S.; Pienta, K., Simulating the hallmarks of cancer, Artif. life, 12, 617-634, (2006)
[2] Alarcon, T.; Byrne, H.; Maini, P., A cellular automaton model for tumour growth in inhomogeneous environment, J. theor. biol., 225, 257-274, (2003)
[3] Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P., Molecular biology of the cell, (2002), Garland Science New York
[4] Ambrosi, D.; Mollica, F., On the mechanics of a growing tumor, Int. J. eng. sci., 40, 1297-1316, (2002) · Zbl 1211.74161
[5] Ambrosi, D.; Preziosi, L., On the closure of mass balance models for tumor growth, Math. models methods appl. sci., 12, 737-754, (2002) · Zbl 1016.92016
[6] Anderson, A., A hybrid mathematical model of solid tumour invasion: the importance of cell adhesion, Math. med. biol., 22, 163-186, (2005) · Zbl 1073.92013
[7] Anderson, A.; Weaver, A.; Commmings, P.; Quaranta, V., Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment, Cell, 127, 905-915, (2006)
[8] Anderson, D.; McFadden, G., Diffuse-interface methods in fluid mechanics, Ann. rev. fluid mech., 30, 139-165, (1998) · Zbl 1398.76051
[9] Araujo, R.; McElwain, D., A history of the study of solid tumour growth: the contribution of mathematical modelling, Bull. math. biol., 66, 1039-1091, (2004) · Zbl 1334.92187
[10] Araujo, R.; McElwain, D., A mixture theory for the genesis of residual stresses in growing tissues I: a general formulation, SIAM J. appl. math., 65, 1261-1284, (2005) · Zbl 1074.74043
[11] Araujo, R.; McElwain, D., A mixture theory for the genesis of residual stresses in growing tissues I: solutions to the biphasic equations for a multicell spheroid, SIAM J. appl. math., 66, 447-467, (2005) · Zbl 1130.74311
[12] Armstrong, N.; Painter, K.; Sherratt, J., A continuum approach to modeling cell – cell adhesion, J. theor. biol., 243, 98-113, (2006)
[13] Armstrong, P., Light and electron microscope studies of cell sorting in combinations of chick embryo and neural retina and retinal pigment epithelium, Wilhelm roux arch., 168, 125-141, (1971)
[14] Badalessi, V.; Ceniceros, H.; Banerjee, S., Computation of multiphase systems with phase field models, J. comput. phys., 190, 371-394, (2003) · Zbl 1076.76517
[15] Bartha, K., Rieger, H., 2006. Vascular network remodeling via vessel cooption, regression and growth in tumors. J. Theor. Biol. 241, 903-918.
[16] Bauer, A.; Jackson, T.; Jiang, Y., A cell-based model exhibiting branching and anastomosis during tumor-induced angiogenesis, Biophys. J., 92, 3105-3121, (2007)
[17] Bellomo, N.; de Angelis, E.; Preziosi, L., Multiscale modeling and mathematical problems related to tumor evolution and medical therapy (correct citation info?), Comput. math. methods med., 5, 111-136, (2003) · Zbl 1107.92020
[18] Ben-Amar, M.; Gorielly, A., Growth and instability in elastic tissues, J. mech. phys. solids, 53, 2284-2319, (2005) · Zbl 1120.74336
[19] Breward, C.; Byrne, H.; Lewis, C., The role of cell – cell interactions in a two-phase model for avascular tumour growth, J. math. biol., 45, 125-152, (2002) · Zbl 1012.92017
[20] Breward, C.; Byrne, H.; Lewis, C., A multiphase model describing vascular tumour growth, Bull. math. biol., 65, 609-640, (2003) · Zbl 1334.92190
[21] Bussolino, F.; Arese, M.; Audero, E.; Giraudo, E.; Marchiò, S.; Mitola, S.; Primo, L.; Serini, G., Biological aspects of tumour angiogenesis, (), 1-22, (Chapter 1)
[22] Byrne, H.; Chaplain, M., Growth of nonnecrotic tumors in the presence and absence of inhibitors, Math. biosci., 130, 151-181, (1995) · Zbl 0836.92011
[23] Byrne, H.; Chaplain, M., Growth of necrotic tumors in the presence and absence of inhibitors, Math. biosci., 135, 187-216, (1996) · Zbl 0856.92010
[24] Byrne, H.; Chaplain, M., Modelling the role of cell – cell adhesion in the growth and development of carcinomas, Math. comput. modelling, 24, 1-17, (1996) · Zbl 0883.92014
[25] Byrne, H.; King, J., A two-phase model of solid tumour growth, Appl. math. lett., 16, 567-573, (2003) · Zbl 1040.92015
[26] Byrne, H.; Preziosi, L., Modelling solid tumour growth using the theory of mixtures, Math. med. biol., 20, 341-366, (2003) · Zbl 1046.92023
[27] Byrne, H.; King, J.; McElwain, D.; Preziosi, L., A two-phase model of solid tumor growth, Appl. math. lett., 16, 567-573, (2003) · Zbl 1040.92015
[28] Byrne, H.; Alarcon, T.; Owen, M.; Webb, S.; Maini, P., Modeling aspects of cancer dynamics: a review, Philos. trans. R. soc. A, 364, 1563-1578, (2006)
[29] Cahn, J.; Hilliard, J., Free energy of a nonuniform system. I. interfacial free energy, J. chem. phys., 28, 258, (1958)
[30] Chaplain, M., Avascular growth, angiogenesis and vascular growth in solid tumours: the mathematical modelling of the stages of tumour development, Math. comput. modelling, 23, 47-87, (1996) · Zbl 0859.92012
[31] Chaplain, M.; Graziano, L.; Preziosi, L., Mathematical modelling of the loss of tissue compression responsiveness and its role in solid tumor development, Math. med. biol., 23, 192-229, (2006) · Zbl 1098.92037
[32] Chen, X.; Friedman, A., A free boundary problem for an elliptic – hyperbolic system: an application to tumor growth, SIAM J. math. anal., 35, 974-986, (2003) · Zbl 1054.35144
[33] Cohen, D.; Murray, J., A generalized diffusion model for growth and dispersal in a population, J. math. biol., 12, 237-249, (1981) · Zbl 0474.92013
[34] Cristini, V.; Lowengrub, J.; Nie, Q., Nonlinear simulation of tumor growth, J. math. biol., 46, 191-224, (2003) · Zbl 1023.92013
[35] Cristini, V.; Frieboes, H.; Gatenby, R.; Caserta, S.; Ferrari, M.; Sinek, J., Morphologic instability and cancer invasion, Clin. cancer res., 11, 6772-6779, (2005)
[36] Cristini, V., Li, X., Lowengrub, J., Wise, S., 2008. Nonlinear simulations of solid tumor growth using a mixture model: invasion and branching. J. Math. Biol., in press. · Zbl 1311.92039
[37] Elliot, C., Luckhaus, S., 1991. A generalized diffusion equation for phase separation of a multi-component mixture with interfacial free energy. Report 887, Institute for Mathematics and its Applications.
[38] Esteban, M.; Maxwell, P., If, a missing link between metabolism and cancer, Nature med., 11, 1047-1048, (2005)
[39] Franks, S.; King, J., Interactions between a uniformly proliferating tumor and its surrounding. uniform material properties, Math. med. biol., 20, 47-89, (2003) · Zbl 1044.92032
[40] Franks, S.; Byrne, H.; King, J.; Underwood, J.; Lewis, C., Modeling the early growth of ductal carcinoma in situ of the breast, J. math. biol., 47, 424-452, (2003) · Zbl 1050.92030
[41] Franks, S.; Byrne, H.; Mudhar, H.; Underwood, J.; Lewis, C., Mathematical modeling of comedo ductal carcinoma in situ of the breast, Math. med. biol., 20, 277-308, (2003) · Zbl 1039.92021
[42] Frieboes, H.; Zheng, X.; Sun, C.-H.; Tromberg, B.; Gatenby, R.; Cristini, V., An integrated computational/experimental model of tumor invasion, Cancer res., 66, 1597-1604, (2006)
[43] Frieboes, H.; Lowengrub, J.; Wise, S.; Zheng, X.; Macklin, P.; Bearer, E.; Cristini, V., Computer simulation of glioma growth and morphology, Neuroimage, S59-S70, (2007)
[44] Friedman, A.; Reitich, F., Analysis of a mathematical model for the growth of tumors, J. math. biol., 38, 262-284, (1999) · Zbl 0944.92018
[45] Fung, Y., Biomechanics: motion, flow, stress and growth, (1990), Springer New York · Zbl 0743.92007
[46] Gatenby, R.; Smallbone, K.; Maini, P.; Rose, F.; Averill, J.; Nagle, R.; Worrall, L.; Gillies, R., Cellular adaptations to hypoxia and acidosis during somatic evolution of breast cancer, Br. J. cancer, 97, 646-653, (2007)
[47] Gerlee, P.; Anderson, A., An evolutionary hybrid cellular automaton model of solid tumor growth, J. theor. biol., 246, 583-603, (2007)
[48] Gerlee, P.; Anderson, A., Stability analysis of a hybrid cellular automaton model of cell colony growth, Phys. rev. E, 75, 051911, (2007)
[49] Graeber, T.; Osmanian, C.; Jacks, T., Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumors, Nature, 379, 88-91, (1996)
[50] Graziano, L.; Preziosi, L., Mechanics in tumor growth, (), 267-328
[51] Greenspan, H., On the growth and stability of cell cultures and solid tumors, J. theor. biol., 56, 229-242, (1976)
[52] Hatzikirou, H.; Deutsch, A.; Schaller, C.; Simon, M.; Swanson, K., Mathematical modeling of glioblastoma tumour development: a review, Math. models methods appl. sci., 15, 1779-1794, (2005) · Zbl 1077.92032
[53] Hogea, C.; Murray, B.; Sethian, J., Simulating complex tumor dynamics from avascular to vascular growth using a general level-set method, J. math. biol., 53, 86-134, (2006) · Zbl 1100.92029
[54] Humphrey, J., Continuum biomechanics of soft biological tissues, Proc. R. soc. London A, 459, 303-311, (2003) · Zbl 1116.74385
[55] Jiang, G.-S.; Shu, C.-W., Efficient implementation of weighted ENO schemes, J. comput. phys., 126, 202-228, (1996) · Zbl 0877.65065
[56] Jiang, Y.; Pjesivac-Grbovic, J.; Cantrell, C.; Freyer, J., A multiscale model for avascular tumor growth, Biophys. J., 89, 3884-3894, (2005)
[57] Jones, A.; Byrne, H.; Gibson, J.; Dold, J., Mathematical model for the stress induced during avascular tumor growth, J. math. biol., 40, 473-499, (2000) · Zbl 0964.92025
[58] Jou, H.; Leo, P.; Lowengrub, J., A diffuse interface model for microstructural evolution in elastically stressed solids, Acta mater., 46, 2113-2130, (1998)
[59] Kim, J., A continuous surface tension force formulation for diffuse-interface models, J. comput. phys., 204, 784-804, (2005) · Zbl 1329.76103
[60] Kim, J.; Lowengrub, J., Phase field modeling and simulation of three phase flows, Interphases free boundaries, 7, 435-466, (2005) · Zbl 1100.35088
[61] Kim, J.; Kang, K.; Lowengrub, J., Conservative multigrid methods for cahn – hilliard fluids, J. comput. phys., 193, 511-543, (2003) · Zbl 1109.76348
[62] Kim, Y.; Stolarska, M.; Othmer, H., A hybrid model for tumor spheroid growth in vitro i: theoretical development and early results, Math. methods app. sci., 17, 1773-1798, (2007) · Zbl 1135.92016
[63] Kunkel, P., Ulbricht, U., Bohlen, P., M.A. Brockmann, R.F., Stavrou, D., Westphal, M., Lamszus, K., 2001. Inhibition of glioma angiogenesis and growth in vivo by systemic treatment with a monoclonal antibody against vascular endothelial growth factor receptor-2. Cancer Res. 61, 6624-6628.
[64] Lamszus, K.; Kunkel, P.; Westphal, M., Invasion as limitation to anti-angiogenic glioma therapy, Acta neurochir suppl., 88, 169-177, (2003)
[65] Landau, L., Statistical physics, (1984), Butterworth-Heinemann Oxford
[66] Lee, D.; Rieger, H., Flow correlated percolation during vascular remodeling in growing tumors, Phys. rev. lett., 96, 058104, (2006)
[67] Lee, H.; Lowengrub, J.; Goodman, J., Modeling pinchoff and reconnection in a hele – shaw cell. I. the models and their calibration, Phys. fluids, 2, 492, (2002) · Zbl 1184.76316
[68] Li, X.; Cristini, V.; Nie, Q.; Lowengrub, J., Nonlinear three-dimensional simulation of solid tumor growth, Discrete dyn. continuous dyn. syst. B, 7, 581-604, (2007) · Zbl 1124.92022
[69] Liotta, L.; Kohn, E., The microenvironment of the tumour – host interface, Nature, 411, 375-379, (2001)
[70] Lowengrub, J.; Truskinovsky, L., Cahn – hilliard fluids and topological transitions, Proc. R. soc. London A, 454, 2617-2654, (1998) · Zbl 0927.76007
[71] Lubarda, V.; Hoger, A., On the mechanics of solids with a growing mass, Int. J. solids struct., 39, 4627-4664, (2002) · Zbl 1045.74035
[72] Macklin, P.; Lowengrub, J., Evolving interfaces via gradients of geometry-dependent interior Poisson problems: application to tumor growth, J. comput. phys., 203, 191-220, (2005) · Zbl 1067.65111
[73] Macklin, P.; Lowengrub, J., An improved geometry-aware curvature discretization for level set methods: application to tumor growth, J. comput. phys., 215, 392-401, (2006) · Zbl 1089.92024
[74] Macklin, P., Lowengrub, J., 2007. A new ghost cell/level set method for moving boundary problems: application to tumor growth. J. Sci. Comput., in press, doi:10.1007/S10915-008-9190-Z. · Zbl 1203.65144
[75] Macklin, P., McDougall, S., Anderson, A., Chaplain, M., Cristini, V., Lowengrub, J., 2008. Multiscale modeling and nonlinear simulation of vascular tumour growth. J. Math. Biol., in press. · Zbl 1311.92040
[76] McArthur, B.; Please, C., Residual stress generation and necrosis formation in multicell tumor spheroids, J. math. biol., 49, 537-552, (2004) · Zbl 1055.92024
[77] Morton, K.; Mayers, D., Numerical solution of partial differential equations, (2005), Cambridge University Press Cambridge, UK · Zbl 1126.65077
[78] Murray, J., 2002. Mathematical Biology I: An Introduction, 3rd ed. In: Interdisciplinary Applied Mathematics, vol. 17. Springer, Berlin. · Zbl 1006.92001
[79] Pego, R., Front migration in the nonlinear cahn – hilliard equation, Proc. R. soc. London A, 422, 261-278, (1989) · Zbl 0701.35159
[80] Pettet, G.; Please, C.; Tindall, M.; McElwain, D., The migration of cells in multicell tumor spheriods, Bull. math. biol., 63, 231-257, (2001) · Zbl 1323.92037
[81] Preziosi, L., Tosin, A., 2007. Multiphase modeling of tumor growth and extracellular matrix interaction: mathematical tools and applications, preprint. · Zbl 1311.92029
[82] Quaranta, V.; Weaver, A.; Cummings, P.; Anderson, A., Mathematical modeling of cancer: the future of prognosis and treatment, Clin. chim. acta, 357, 173-179, (2005)
[83] Ramanathan, A.; Wang, C.; Schreiber, S., Perturbational profiling of a cell-line model of tumorigenesis by using metabolic measurements, Proc. natl acad. sci. USA, 102, 5992-5997, (2005)
[84] Roose, T.; Netti, P.; Munn, L.; Boucher, Y.; Jain, R., Solid stress generated by spheroid growth using a linear poroelastic model, Microvasc. res., 66, 204-212, (2003)
[85] Roose, T.; Chapman, S.J.; Maini, P., Mathematical models of avascular tumor growth, SIAM rev., 49, 179-208, (2007) · Zbl 1117.93011
[86] Rowlinson, J.; Widom, B., Molecular theory of capillarity, (1982), Clarendon Press Oxford
[87] Sanga, S.; Sinek, J.; Frieboes, H.; Ferrari, M.; Fruehauf, J.; Cristini, V., Mathematical modeling of cancer progression and response to chemotherapy, Expert rev. anticancer ther., 6, 1361-1376, (2006)
[88] Sanga, S., Frieboes, H., Zheng, X., Gatenby, R., Bearer, E., Cristini, V., 2007. Predictive oncology: a review of multidisciplinary, multiscale in silico modeling linking phenotype, morphology and growth. NeuroImage 37, S120-S134.
[89] Sinek, J., Sanga, S., Zheng, X., Frieboes, H., Ferrari, M., Cristini, V., 2008. Predicting drug pharmacokinetics and effect in vascularized tumors using computer simulation. J. Math. Biol., in press. · Zbl 1311.92096
[90] Sinek, J.; Frieboes, H.; Zheng, X.; Cristini, V., Two-dimensional chemotherapy simulations demonstrate fundamental transport and tumor response limitations involving nanoparticles, Biomed. microdevices, 6, 297-309, (2004)
[91] Trottenberg, U.; Oosterlee, C.; Schüller, A., Multigrid, (2005), Academic Press New York
[92] Wise, S.; Kim, J.; Lowengrub, J., Solving the regularized, strongly anisotropic chan – hilliard equation by an adaptive nonlinear multigrid method, J. comput. phys., 226, 414-446, (2007) · Zbl 1310.82044
[93] Wise, S., Lowengrub, J., Cristini, V., 2008. An adaptive algorithm for simulating solid tumor growth using mixture models, in preparation. · Zbl 1211.65123
[94] Yue, P.; Feng, J.; Liu, C.; Shen, J., Computation of multiphase systems with phase field models, Phys. fluids, 17, 123101, (2005) · Zbl 1188.76180
[95] Zheng, X.; Wise, S.; Cristini, V., Nonlinear simulation of tumor necrosis, neo-vascularization and tissue invasion via an adaptive finite-element/level-set method, Bull. math. biol., 67, 211-259, (2005) · Zbl 1334.92214
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.