×

A calcium-induced calcium release mechanism mediated by calsequestrin. (English) Zbl 1398.92075

Summary: Calcium (Ca\(^{2+}\))-induced Ca\(^{2+}\) release (CICR) is widely accepted as the principal mechanism linking electrical excitation and mechanical contraction in cardiac cells. The CICR mechanism has been understood mainly based on binding of cytosolic Ca\(^{2+}\) with ryanodine receptors (RyRs) and inducing Ca\(^{2+}\) release from the sarcoplasmic reticulum (SR). However, recent experiments suggest that SR lumenal Ca\(^{2+}\) may also participate in regulating RyR gating through calsequestrin (CSQ), the SR lumenal Ca\(^{2+}\) buffer. We investigate how SR Ca\(^{2+}\) release via RyR is regulated by Ca\(^{2+}\) and calsequestrin (CSQ). First, a mathematical model of RyR kinetics is derived based on experimental evidence. We assume that the RyR has three binding sites, two cytosolic sites for Ca\(^{2+}\) activation and inactivation, and one SR lumenal site for CSQ binding. The open probability (\(P_o\)) of the RyR is found by simulation under controlled cytosolic and SR lumenal Ca\(^{2+}\). Both peak and steady-state \(P_o\) effectively increase as SR lumenal Ca\(^{2+}\) increases. Second, we incorporate the RyR model into a CICR model that has both a diadic space and the junctional SR (jSR). At low jSR Ca\(^{2+}\) loads, CSQs are more likely to bind with the RyR and act to inhibit jSR Ca\(^{2+}\) release, while at high SR loads CSQs are more likely to detach from the RyR, thereby increasing jSR Ca\(^{2+}\) release. Furthermore, this CICR model produces a nonlinear relationship between fractional jSR Ca\(^{2+}\) release and jSR load. These findings agree with experimental observations in lipid bilayers and cardiac myocytes.

MSC:

92C40 Biochemistry, molecular biology
92C37 Cell biology
92C45 Kinetics in biochemical problems (pharmacokinetics, enzyme kinetics, etc.)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bassani, J.W.M.; Yuan, W.; Bers, D.M., Fractional SR ca release is regulated by trigger ca and SR ca content in cardiac myocytes, Am. J. physiol., 268, C1313-C1329, (1995)
[2] Beard, N.A.; Sakowska, M.M.; Dulhunty, A.F.; Laver, D.R., Calsequestrin is an inhibitor of skeletal muscle ryanodine receptor calcium release channels, Biophys. J., 82, 310-320, (2002)
[3] Beard, N.A.; Laver, D.R.; Dulhunty, A.F., Calsequestrin and the calcium release channel of skeletal and cardiac muscle, Prog. biophys. mol. biol., 85, 33-69, (2004)
[4] Beard, N.A.; Casarotto, M.G.; Wei, L.; Varsanyi, M.; Laver, D.R.; Dulhunty, A.F., Regulation of ryanodine receptor by calsequestrin: effect of high luminal \(\operatorname{Ca}^{2 +}\) and phosphorylation, Biophys. J., 88, 3444-3454, (2005)
[5] Bers, D.M., Excitation – contraction coupling and cardiac contractile force, (2001), Kluwer Academic Press Dordrecht, The Netherlands
[6] Boyden, P.A.; ter Keurs, H.E., Reverse excitation – contraction coupling: \(\operatorname{Ca}^{2 +}\) ions as initiators of arrhythmias, J. cardiovasc. electrophysiol., 12, 382-385, (2001)
[7] Cannell, M.B.; Cheng, H.; Lederer, W.J., Spatial non-uniformities in \([\operatorname{Ca}^{2 +}]_i\) during excitation – contraction coupling in cardiac myocytes, Biophys. J., 67, 1942-1956, (1994)
[8] Cheng, H.; Lederer, W.J.; Cannell, M.B., Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle, Science., 262, 740-744, (1993)
[9] Ching, L.L.; Williams, A.J.; Sitsapesan, R., Evidence for \(\operatorname{Ca}^{2 +}\) activation and inactivation sites on the luminal side of the cardiac ryanodine receptor complex, Circ. res., 87, 201-206, (2000)
[10] Cho, J.H.; Ko, K.M.; Gunasekaran, G.; Lee, W.; Kang, G.B.; Rho, S.; Park, B.; Yu, J.; Kagawa, H.; Eom, S.; Kim, D.H.; Ahnn, J., Functional importance of polymerization and localization of calsequestrin in C. elegans, J. cell. sci., 120, 1551-1558, (2007)
[11] Chudin, E.; Goldhaber, J.; Garinkel, A.; Weiss, J.; Kogan, B., Intracellular \(\operatorname{Ca}^{2 +}\) dynamics and the stability of ventricular tachycardia, Biophys. J., 77, 2930-2941, (1999)
[12] Clusin, W.T., Calcium and cardiac arrhythmias: DADs, EADs, and alternans, Crit. rev. clin. lab. sci., 40, 337-375, (2003)
[13] De Young, G.W.; Keizer, J., A single pool IP3-receptor based model for agonist stimulated \(\operatorname{Ca}^{2 +}\) oscillations, Proc. natl. acad. sci. USA, 89, 9895-9899, (1992)
[14] Donoso, P.; Prieto, H.; Hidalgo, C., Luminal calcium regulates calcium release in triads isolated from frog and rabbit skeletal muscle, Biophys. J., 68, 507-515, (1995)
[15] Dulhunty, A.F.; Beard, N.A.; Pouliquin, P.; Kimura, T., Novel regulators of ryr \(\operatorname{Ca}^{2 +}\) release channels: insight into molecular changes in genetically-linked myopathies, J. muscle res. cell. motil., 27, 351-365, (2006)
[16] Fabiato, A., Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum, Am. J. physiol., 245, C1-C14, (1983)
[17] Fabiato, A., Time and calcium dependence of activation and inactivation of calcium-induced release of calcium from the sarcoplasmic reticulum of a skinned canine cardiac purkinje cell, J. gen. physiol., 85, 247-289, (1985)
[18] Fabiato, A., Two kinds of calcium-induced release of calcium from the sarcoplasmic reticulum of skinned cardiac cells, Adv. exp. med. biol., 311, 245-262, (1992)
[19] Guo, W.; Campbell, K.P., Association of triadin with the ryanodine receptor and calsequestrin in the lumen of the sarcoplasmic reticulum, J. biol. chem., 270, 9027-9030, (1995)
[20] Gyorke, I.; Gyorke, S., Regulation of the cardiac ryanodine receptor channel by luminal \(\operatorname{Ca}^{2 +}\) involves luminal \(\operatorname{Ca}^{2 +}\) sensing sites, Biophys. J., 75, 2801-2810, (1998)
[21] Gyorke, S.; Gyorke, I.; Lukyanenko, V.; Terentyev, D.; Viatchenko-Karpinski, S.; Wiesner, T.F., Regulation of sarcoplasmic reticulum calcium release by luminal calcium in cardiac muscle, Front. biosci., 7, d1454-d1463, (2002)
[22] Gyorke, I.; Hester, N.; Jones, L.R.; Gyorke, S., The role of calsequestrin, triadin, and junctin in conferring cardiac ryanodine receptor responsiveness to luminal calcium, Biophys. J., 86, 2121-2128, (2004)
[23] Ikemoto, N.; Ronjat, M.; Meszaros, L.G.; Koshita, M., Postulated role of calsequestrin in the regulation of calcium release from sarcoplasmic reticulum, Biochemistry, 28, 6764-6771, (1989)
[24] Iyer, V.; Mazhari, R.; Winslow, R.L., A computational model of the human left-ventricular epicardial myocyte, Biophys. J., 87, 1507-1525, (2004)
[25] Jones, L.R.; Zhang, L.; Sanborn, K.; Jorgensen, A.O.; Kelley, J., Purification, primary structure, and immunological characterization of the 26-kda calsequestrin binding protein (junctin) from cardiac junctional sarcoplasmic reticulum, J. biol. chem., 270, 30787, (1995)
[26] Jones, L.R.; Suzuki, Y.J.; Wang, W.; Kobayashi, Y.M.; Ramesh, V.; Franzini-Armstrong, C., Regulation of \(\operatorname{Ca}^{2 +}\) signaling in transgenic mouse cardiac myocytes overexpressing calsequestrin, J. clin. invest., 101, 1385-1393, (1998)
[27] Jorgensen, A.O.; Campbell, K.P., Evidence for the presence of calsequestrin in two structurally different regions of myocardial sarcoplasmic reticulum, J. cell biol., 98, 1597-1602, (1984)
[28] Keener, J.P.; Sneyd, J., Mathematical physiology, (1998), Springer New York · Zbl 0913.92009
[29] Knollmann, B.C.; Chopra, N.; Hlaing, T.; Akin, B.; Yang, T.; Ettensohn, K.; Knollmann, B.E.C.; Horton, K.D.; Weissman, N.J.; Holinstat, I.; Zhang, W.; Roden, D.M.; Jones, L.R.; Franzini-Armstrong, C.; Pfeifer, K., Casq2 deletion causes sarcoplasmic reticulum volume increase, premature \(\operatorname{Ca}^{2 +}\) release, and catecholaminergic polymorphic ventricular tachycardia, J. clin. invest., 116, 2510-2520, (2006)
[30] Laver, D.R., \(\operatorname{Ca}^{2 +}\) stores regulate ryanodine receptor \(\operatorname{Ca}^{2 +}\) release channels via luminal and cytosolic \(\operatorname{Ca}^{2 +}\) sites, Biophys. J., 92, 3541-3555, (2007)
[31] Maclennan, D.H.; Wong, P.T.S., Isolation of a calcium-sequestering protein from sarcoplasmic reticulum, Proc. natl. acad. sci., 68, 1231-1235, (1971)
[32] Miller, L.W.; Currie, S.; Loughrey, C.M.; Kettlewell, S.; Seidler, T.; Reynolds, D.F.; Hasenfuss, G.; Smith, G.L., Effects of calsequestrin over-expression on excitation – contraction coupling in isolated rabbit cardiomyocytes, Cardiovasc. res., 67, 667-677, (2005)
[33] Mitchell, R.D.; Simmerman, H.K.; Jones, L.R., \(\operatorname{Ca}^{2 +}\) binding effects on protein conformation and protein interactions of canine cardiac calsequestrin, J. biol. chem., 263, 1376-1381, (1988)
[34] Pape, P.C.; Fenelon, K.; Lamboley, C.H.; Stachura, D., Role of calsequestrin evaluated from changes in free and total calcium concentrations in the sarcoplasmic reticulum of frog cut skeletal muscle fibers, J. physiol., 581, 319-367, (2007)
[35] Rice, J.J.; Jafri, M.S.; Winslow, R.L., Modeling gain and gradedness of \(\operatorname{Ca}^{2 +}\) release in the functional unit of the cardiac diadic space, Biophys. J., 77, 1871-1884, (1999)
[36] Sato, Y.; Ferguson, D.G.; Sako, H.; Dorn, G.W.; Kadambi, V.J.; Yatani, A.; Hoit, B.D.; Walsh, R.A.; Kranias, E.G., Cardiac-specific overexpression of mouse cardiac calsequestrin is associated with depressed cardiovascular function and hypertrophy in transgenic mice, J. biol. chem., 273, 28470-28477, (1998)
[37] Schmidt, A.G.; Kadambi, V.J.; Ball, N.; Sato, Y.; Walsh, R.A.; Kranias, E.G.; Hoit, B.D., Cardiac-specific overexpression of calsequestrin results in left ventricular hypertrophy, depressed force-frequency relation and pulsus alternans in vivo, J. mol. cell. cardiol., 32, 1735-1744, (2000)
[38] Sham, J.S.; Song, L.S.; Chen, Y.; Deng, L.H.; Stern, M.D.; Lakatta, E.G.; Cheng, H., Termination of \(\operatorname{Ca}^{2 +}\) release by a local inactivation of ryanodine receptors in cardiac myocytes, Proc. natl. acad. sci. USA, 95, 15096-15101, (1998)
[39] Shannon, T.R.; Bers, D.M., Assessment of intra-SR free [ca] and buffering in rat heart, Biophys. J., 73, 1524-1531, (1997)
[40] Shannon, T.R.; Ginsburg, K.S.; Bers, D.M., Reverse mode of the sarcoplasmic reticulum calcium-pump and load-dependent cytosolic calcium decline in voltage-clamped cardiac ventricular myocytes, Biophys. J., 78, 322-333, (2000)
[41] Shannon, T.R.; Ginsburg, K.S.; Bers, D.M., Potentiation of fractional sarcoplasmic reticulum calcium release by total and free intra-sarcoplasmic reticulum calcium concentration, Biophys. J., 78, 334-343, (2000)
[42] Shannon, T.R.; Wang, F.; Puglisi, J.; Weber, C.; Bers, D.M., A mathematical treatment of integrated ca dynamics within the ventricular myocyte, Biophys. J., 87, 3351-3371, (2004)
[43] Sitsapesan, R.; Williams, A.J., Gating of the native and purified cardiac SR \(\operatorname{Ca}^{2 +}\)-release channel with monovalent cations as permeant species, Biophys. J., 67, 1484-1494, (1994)
[44] Sitsapesan, R.; Williams, A.J., Regulation of current flow through ryanodine receptors by luminal \(\operatorname{Ca}^{2 +}\), J. membr. biol., 159, 179-185, (1997)
[45] Snyder, S.M.; Palmer, B.M.; Moore, R.L., A mathematical models of cardiocyte \(\operatorname{Ca}^{2 +}\) dynamics with a novel representation of sarcoplasmic reticulum \(\operatorname{Ca}^{2 +}\) control, Biophys. J., 79, 94-115, (2000)
[46] Sobie, E.A.; Dilly, K.W.; Dos Santos, C.J.; Lederer, W.J.; Jafri, M.S., Termination of cardiac \(\operatorname{Ca}^{2 +}\) sparks: an investigative mathematical model of calcium-induced calcium release, Biophys. J., 83, 59-78, (2002)
[47] Stern, M.D., Theory of excitation – contraction coupling in cardiac muscle, Biophys. J., 63, 497-517, (1992)
[48] Stern, M.D.; Song, L.S.; Cheng, H.; Sham, J.S.; Yang, H.T.; Boheler, K.R.; Rios, E., Local control models of cardiac excitation – contraction coupling: a possible role for allosteric interactions between ryanodine receptors, J. gen. physiol., 113, 469-489, (1999)
[49] Terentyev, D.; Viatchenko-Karpinski, S.; Gyorke, I.; Volpe, P.; Williams, S.C.; Gyorke, S., Calsequestrin determines the functional size and stability of cardiac intracellular calcium stores: mechanism for hereditary arrhythmia, Proc. natl. acad. sci. USA, 100, 11759-11764, (2003)
[50] Wagner, J.; Keizer, J., Effects of rapid buffers on \(\operatorname{Ca}^{2 +}\) diffusion and \(\operatorname{Ca}^{2 +}\) oscillations, Biophys. J., 67, 447-456, (1994)
[51] Zahradnikova, A.; Zahradnik, I.; Gyorke, I.; Gyorke, S., Rapid activation of the cardiac ryanodine receptor by submillisecond calcium stimuli, J. gen. physiol., 114, 787-798, (1999)
[52] Zhang, L.; Kelly, J.; Schmeisser, G.; Kobayashi, Y.M.; Jones, L.R., Complex formation between junctin, triadin, calsequestrin, and the ryanodine receptor, J. biol. chem., 272, 23389-23397, (1997)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.