×

zbMATH — the first resource for mathematics

Dissipative hydrodynamics in superspace. (English) Zbl 1398.81146
Summary: We construct a Schwinger-Keldysh effective field theory for relativistic hydrodynamics for charged matter in a thermal background using a superspace formalism. Superspace allows us to efficiently impose the symmetries of the problem and to obtain a simple expression for the effective action. We show that the theory we obtain is compatible with the Kubo-Martin-Schwinger condition, which in turn implies that Green’s functions obey the fluctuation-dissipation theorem. Our approach complements and extends existing formulations found in the literature.

MSC:
81T10 Model quantum field theories
76Y05 Quantum hydrodynamics and relativistic hydrodynamics
82B10 Quantum equilibrium statistical mechanics (general)
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Haehl, FM; Loganayagam, R.; Rangamani, M., The fluid manifesto: emergent symmetries, hydrodynamics and black holes, JHEP, 01, 184, (2016) · Zbl 1388.83350
[2] Crossley, M.; Glorioso, P.; Liu, H., Effective field theory of dissipative fluids, JHEP, 09, 095, (2017) · Zbl 1382.81199
[3] Haehl, FM; Loganayagam, R.; Rangamani, M., Topological σ-models & dissipative hydrodynamics, JHEP, 04, 039, (2016) · Zbl 1388.83351
[4] F.M. Haehl, R. Loganayagam and M. Rangamani, Schwinger-Keldysh formalism. Part I: BRST symmetries and superspace, JHEP06 (2017) 069 [arXiv:1610.01940] [INSPIRE]. · Zbl 1380.81369
[5] F.M. Haehl, R. Loganayagam and M. Rangamani, Schwinger-Keldysh formalism. Part II: thermal equivariant cohomology, JHEP06 (2017) 070 [arXiv:1610.01941] [INSPIRE]. · Zbl 1380.81370
[6] Herglotz, G., Über die Mechanik des deformierbaren Körpers vom Standpunkte der Relativitätstheorie, Ann. Physik, 341, 493, (1911) · JFM 42.0863.02
[7] Taub, AH, General relativistic variational principle for perfect fluids, Phys. Rev., 94, 1468, (1954)
[8] Carter, B., Elastic perturbation theory in general relativity and a variation principle for a rotating solid star, Comm. Mat. Phys., 305, 261, (1973) · Zbl 0269.73011
[9] Dubovsky, S.; Gregoire, T.; Nicolis, A.; Rattazzi, R., Null energy condition and superluminal propagation, JHEP, 03, 025, (2006) · Zbl 1226.83090
[10] N. Andersson and G.L. Comer, Relativistic fluid dynamics: physics for many different scales, Living Rev. Rel.10 (2007) 1 [gr-qc/0605010] [INSPIRE]. · Zbl 1255.85001
[11] Dubovsky, S.; Hui, L.; Nicolis, A.; Son, DT, Effective field theory for hydrodynamics: thermodynamics and the derivative expansion, Phys. Rev., D 85, (2012)
[12] Jensen, K.; etal., Towards hydrodynamics without an entropy current, Phys. Rev. Lett., 109, 101601, (2012)
[13] Banerjee, N.; etal., Constraints on fluid dynamics from equilibrium partition functions, JHEP, 09, 046, (2012) · Zbl 1397.82026
[14] Bhattacharyya, S., Entropy current and equilibrium partition function in fluid dynamics, JHEP, 08, 165, (2014) · Zbl 1333.81066
[15] Bhattacharyya, S., Entropy current from partition function: one example, JHEP, 07, 139, (2014)
[16] Bhattacharya, J.; Bhattacharyya, S.; Rangamani, M., Non-dissipative hydrodynamics: effective actions versus entropy current, JHEP, 02, 153, (2013) · Zbl 1342.76006
[17] Haehl, FM; Loganayagam, R.; Rangamani, M., The eightfold way to dissipation, Phys. Rev. Lett., 114, 201601, (2015) · Zbl 1388.81456
[18] Haehl, FM; Loganayagam, R.; Rangamani, M., Adiabatic hydrodynamics: the eightfold way to dissipation, JHEP, 05, 060, (2015) · Zbl 1388.81456
[19] Kovtun, P.; Moore, GD; Romatschke, P., Towards an effective action for relativistic dissipative hydrodynamics, JHEP, 07, 123, (2014)
[20] Endlich, S.; Nicolis, A.; Porto, RA; Wang, J., Dissipation in the effective field theory for hydrodynamics: First order effects, Phys. Rev., D 88, 105001, (2013)
[21] Andersson, N.; Comer, GL, A covariant action principle for dissipative fluid dynamics: from formalism to fundamental physics, Class. Quant. Grav., 32, (2015) · Zbl 1328.83028
[22] Grozdanov, S.; Polonyi, J., Viscosity and dissipative hydrodynamics from effective field theory, Phys. Rev., D 91, 105031, (2015)
[23] Floerchinger, S., Variational principle for theories with dissipation from analytic continuation, JHEP, 09, 099, (2016) · Zbl 1390.81382
[24] Harder, M.; Kovtun, P.; Ritz, A., On thermal fluctuations and the generating functional in relativistic hydrodynamics, JHEP, 07, 025, (2015) · Zbl 1388.83352
[25] Keldysh, LV, Diagram technique for nonequilibrium processes, Zh. Eksp. Teor. Fiz., 47, 1515, (1964)
[26] Schwinger, JS, Brownian motion of a quantum oscillator, J. Math. Phys., 2, 407, (1961) · Zbl 0098.43503
[27] A. Kamenev, Field theory of non-equilibrium systems, Cambridge University Press, Cambridge U.K. (2011). · Zbl 1267.82003
[28] Parisi, G.; Sourlas, N., Random magnetic fields, supersymmetry and negative dimensions, Phys. Rev. Lett., 43, 744, (1979)
[29] ZINN-JUSTIN, JEAN, Critical Dynamics, 832-851, (2002)
[30] Gao, P.; Liu, H., Emergent supersymmetry in local equilibrium systems, JHEP, 01, 040, (2018) · Zbl 1384.81134
[31] Maldacena, J.; Shenker, SH; Stanford, D., A bound on chaos, JHEP, 08, 106, (2016) · Zbl 1390.81388
[32] Larkin, AI; Ovchinnikov, YN, Quasiclassical method in the theory of superconductivity, Sov. JETP, 28, 1200, (1969)
[33] Kubo, Ryogo, Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems, Journal of the Physical Society of Japan, 12, 570-586, (1957)
[34] Martin, Paul C.; Schwinger, Julian, Theory of Many-Particle Systems. I, Physical Review, 115, 1342-1373, (1959) · Zbl 0091.22906
[35] Haag, R.; Hugenholtz, NM; Winnink, M., On the equilibrium states in quantum statistical mechanics, Commun. Math. Phys., 5, 215, (1967) · Zbl 0171.47102
[36] Jensen, K.; Loganayagam, R.; Yarom, A., Anomaly inflow and thermal equilibrium, JHEP, 05, 134, (2014)
[37] Braaten, Eric; Nieto, Agustin, Effective field theory approach to high-temperature thermodynamics, Physical Review D, 51, 6990-7006, (1995)
[38] Grassi, PA; Mezzalira, A.; Sommovigo, L., Supersymmetric fluid dynamics, Phys. Rev., D 85, 125009, (2012)
[39] K. Jensen, R. Marjieh, N. Pinzani-Fokeeva and A. Yarom, A panoply of Schwinger-Keldysh transport, arXiv:1804.04654 [INSPIRE].
[40] Witten, E., Topological quantum field theory, Commun. Math. Phys., 117, 353, (1988) · Zbl 0656.53078
[41] Witten, E., Introduction to cohomological field theories, Int. J. Mod. Phys., A 6, 2775, (1991) · Zbl 0755.57007
[42] Schwarz, AS, The partition function of degenerate quadratic functional and Ray-Singer invariants, Lett. Math. Phys., 2, 247, (1978) · Zbl 0383.70017
[43] Birmingham, D.; Blau, M.; Rakowski, M.; Thompson, G., Topological field theory, Phys. Rept., 209, 129, (1991)
[44] Labastida, JMF; Lozano, C., Lectures in topological quantum field theory, AIP Conf. Proc., 419, 54, (1998)
[45] V.G. Ivancevic and T.T. Ivancevic, Undergraduate lecture notes in topological quantum field theory, arXiv:0810.0344 [INSPIRE]. · Zbl 1063.92003
[46] Horne, JH, Superspace versions of topological theories, Nucl. Phys., B 318, 22, (1989)
[47] N. Seiberg, Naturalness versus supersymmetric nonrenormalization theorems, Phys. Lett.B 318 (1993) 469 [hep-ph/9309335] [INSPIRE].
[48] Festuccia, G.; Seiberg, N., Rigid supersymmetric theories in curved superspace, JHEP, 06, 114, (2011) · Zbl 1298.81145
[49] S. Weinberg, The quantum theory of fields, volume 2, Cambridge University Press, Cambridge U.K. (1995).
[50] Baier, R.; etal., Relativistic viscous hydrodynamics, conformal invariance and holography, JHEP, 04, 100, (2008) · Zbl 1246.81352
[51] Bhattacharyya, S.; Hubeny, VE; Minwalla, S.; Rangamani, M., Nonlinear fluid dynamics from gravity, JHEP, 02, 045, (2008)
[52] Jensen, K.; etal., Parity-violating hydrodynamics in 2 + 1 dimensions, JHEP, 05, 102, (2012)
[53] Curci, G.; Ferrari, R., An alternative approach to the proof of unitarity for gauge theories, Nuovo Cim., A 35, 273, (1976)
[54] Baulieu, L.; Thierry-Mieg, J., The principle of BRS symmetry: an alternative approach to Yang-Mills theories, Nucl. Phys., B 197, 477, (1982)
[55] Ojima, I., Another BRS transformation, Prog. Theor. Phys., 64, 625, (1980) · Zbl 1059.81606
[56] Wang, E.; Heinz, UW, A generalized fluctuation dissipation theorem for nonlinear response functions, Phys. Rev., D 66, (2002)
[57] P. Glorioso and H. Liu, The second law of thermodynamics from symmetry and unitarity, arXiv:1612.07705 [INSPIRE].
[58] L.D. Landau and E.M. Lifshitz, A course in theoretical physicsFluid mechanics, volume 6, Pergamon Press, U.K. (1987).
[59] Son, DT; Surowka, P., Hydrodynamics with triangle anomalies, Phys. Rev. Lett., 103, 191601, (2009)
[60] Jensen, K.; Loganayagam, R.; Yarom, A., Chern-Simons terms from thermal circles and anomalies, JHEP, 05, 110, (2014)
[61] Maldacena, J.; Stanford, D., Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev., D 94, 106002, (2016)
[62] Jensen, K., Chaos in AdS_{2} holography, Phys. Rev. Lett., 117, 111601, (2016)
[63] J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two dimensional Nearly Anti-de-Sitter space, PTEP2016 (2016) 12C104 [arXiv:1606.01857] [INSPIRE]. · Zbl 1361.81112
[64] Engelsöy, J.; Mertens, TG; Verlinde, H., An investigation of AdS_{2} backreaction and holography, JHEP, 07, 139, (2016) · Zbl 1390.83104
[65] F.M. Haehl, R. Loganayagam, P. Narayan and M. Rangamani, Classification of out-of-time-order correlators, arXiv:1701.02820 [INSPIRE]. · Zbl 1383.81223
[66] Aleiner, IL; Faoro, L.; Ioffe, LB, Microscopic model of quantum butterfly effect: out-of-time-order correlators and traveling combustion waves, Annals Phys., 375, 378, (2016) · Zbl 1378.81056
[67] Gu, Y.; Qi, X-L; Stanford, D., Local criticality, diffusion and chaos in generalized Sachdev-Ye-Kitaev models, JHEP, 05, 125, (2017) · Zbl 1380.81325
[68] Davison, RA; etal., Thermoelectric transport in disordered metals without quasiparticles: the Sachdev-Ye-Kitaev models and holography, Phys. Rev., B 95, 155131, (2017)
[69] Blake, M., Universal diffusion in incoherent black holes, Phys. Rev., D 94, (2016)
[70] Blake, M.; Donos, A., Diffusion and chaos from near AdS_{2} horizons, JHEP, 02, 013, (2017) · Zbl 1377.81155
[71] Boer, J.; Heller, MP; Pinzani-Fokeeva, N., Effective actions for relativistic fluids from holography, JHEP, 08, 086, (2015) · Zbl 1388.83360
[72] Crossley, M.; Glorioso, P.; Liu, H.; Wang, Y., Off-shell hydrodynamics from holography, JHEP, 02, 124, (2016) · Zbl 1388.83344
[73] Maldacena, J.; Susskind, L., Cool horizons for entangled black holes, Fortsch. Phys., 61, 781, (2013) · Zbl 1338.83057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.