×

Multiscale space-time fluid-structure interaction techniques. (English) Zbl 1398.76128

Summary: We present the multiscale space-time techniques we have developed for fluid-structure interaction (FSI) computations. Some of these techniques are multiscale in the way the time integration is performed (i.e. temporally multiscale), some are multiscale in the way the spatial discretization is done (i.e. spatially multiscale), and some are in the context of the sequentially-coupled FSI (SCFSI) techniques developed by the Team for Advanced Flow Simulation and Modeling T\(\bigstar\)AFSM. In the multiscale SCFSI technique, the FSI computational effort is reduced at the stage we do not need it and the accuracy of the fluid mechanics (or structural mechanics) computation is increased at the stage we need accurate, detailed flow (or structure) computation. As ways of increasing the computational accuracy when or where needed, and beyond just increasing the mesh refinement or decreasing the time-step size, we propose switching to more accurate versions of the Deforming-Spatial-Domain/Stabilized Space-Time (DSD/SST) formulation, using more polynomial power for the basis functions of the spatial discretization or time integration, and using an advanced turbulence model. Specifically, for more polynomial power in time integration, we propose to use NURBS, and as an advanced turbulence model to be used with the DSD/SST formulation, we introduce a space-time version of the residual-based variational multiscale method. We present a number of test computations showing the performance of the multiscale space-time techniques we are proposing. We also present a stability and accuracy analysis for the higher-accuracy versions of the DSD/SST formulation.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76D05 Navier-Stokes equations for incompressible viscous fluids
76S05 Flows in porous media; filtration; seepage
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29: 329–349 · Zbl 0482.76039
[2] Tezduyar T, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel finite-element computation of 3D flows. Computer 26: 27–36 · Zbl 05090697
[3] Tezduyar TE, Aliabadi SK, Behr M, Mittal S (1994) Massively parallel finite element simulation of compressible and incompressible flows. Comput Methods Appl Mech Eng 119: 157–177 · Zbl 0848.76040
[4] Mittal S, Tezduyar TE (1994) Massively parallel finite element computation of incompressible flows involving fluid–body interactions. Comput Methods Appl Mech Eng 112: 253–282 · Zbl 0846.76048
[5] Mittal S, Tezduyar TE (1995) Parallel finite element simulation of 3D incompressible flows–fluid–structure interactions. Int J Numer Methods Fluids 21: 933–953 · Zbl 0873.76047
[6] Johnson AA, Tezduyar TE (1997) Parallel computation of incompressible flows with complex geometries. Int J Numer Methods Fluids 24: 1321–1340 · Zbl 0882.76044
[7] Johnson AA, Tezduyar TE (1999) Advanced mesh generation and update methods for 3D flow simulations. Comput Mech 23: 130–143 · Zbl 0949.76049
[8] Kalro V, Tezduyar TE (2000) A parallel 3D computational method for fluid–structure interactions in parachute systems. Comput Methods Appl Mech Eng 190: 321–332 · Zbl 0993.76044
[9] Stein K, Benney R, Kalro V, Tezduyar TE, Leonard J, Accorsi M (2000) Parachute fluid–structure interactions: 3-D computation. Comput Methods Appl Mech Eng 190: 373–386 · Zbl 0973.76055
[10] Tezduyar T, Osawa Y (2001) Fluid–structure interactions of a parachute crossing the far wake of an aircraft. Comput Methods Appl Mech Eng 191: 717–726 · Zbl 1113.76407
[11] Ohayon R (2001) Reduced symmetric models for modal analysis of internal structural-acoustic and hydroelastic-sloshing systems. Comput Methods Appl Mech Eng 190: 3009–3019 · Zbl 0971.74032
[12] Stein K, Tezduyar T, Benney R (2003) Mesh moving techniques for fluid–structure interactions with large displacements. J Appl Mech 70: 58–63 · Zbl 1110.74689
[13] Stein K, Tezduyar TE, Benney R (2004) Automatic mesh update with the solid-extension mesh moving technique. Comput Methods Appl Mech Eng 193: 2019–2032 · Zbl 1067.74587
[14] Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2004) Influence of wall elasticity on image-based blood flow simulation. Jpn Soc Mech Eng J Ser A 70: 1224–1231 (in Japanese)
[15] Tezduyar TE, Sathe S, Keedy R, Stein K (2004) Space–time techniques for finite element computation of flows with moving boundaries and interfaces. In: Gallegos S, Herrera I, Botello S, Zarate F, Ayala G (eds) Proceedings of the III international congress on numerical methods in engineering and applied science, CD-ROM, Monterrey, Mexico
[16] van Brummelen EH, de Borst R (2005) On the nonnormality of subiteration for a fluid-structure interaction problem. SIAM J Sci Comput 27: 599–621 · Zbl 1136.65334
[17] Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space–time finite element techniques for computation of fluid–structure interactions. Comput Methods Appl Mech Eng 195: 2002–2027 · Zbl 1118.74052
[18] Tezduyar TE, Sathe S, Stein K (2006) Solution techniques for the fully-discretized equations in computation of fluid–structure interactions with the space–time formulations. Comput Methods Appl Mech Eng 195: 5743–5753 · Zbl 1123.76035
[19] Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Computer modeling of cardiovascular fluid–structure interactions with the Deforming-Spatial-Domain/Stabilized Space–Time formulation. Comput Methods Appl Mech Eng 195: 1885–1895 · Zbl 1178.76241
[20] Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Fluid–structure interaction modeling of aneurysmal conditions with high and normal blood pressures. Comput Mech 38: 482–490 · Zbl 1160.76061
[21] Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid–structure interaction analysis with applications to arterial blood flow. Comput Mech 38: 310–322 · Zbl 1161.74020
[22] Khurram RA, Masud A (2006) A multiscale/stabilized formulation of the incompressible Navier–Stokes equations for moving boundary flows and fluid–structure interaction. Comput Mech 38: 403–416 · Zbl 1184.76720
[23] Tezduyar TE, Sathe S, Cragin T, Nanna B, Conklin BS, Pausewang J, Schwaab M (2007) Modeling of fluid–structure interactions with the space–time finite elements: arterial fluid mechanics. Int J Numer Methods Fluids 54: 901–922 · Zbl 1276.76043
[24] Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2007) Influence of wall elasticity in patient-specific hemodynamic simulations. Comput Fluids 36: 160–168 · Zbl 1113.76105
[25] Sawada T, Hisada T (2007) Fluid–structure interaction analysis of the two dimensional flag-in-wind problem by an interface tracking ALE finite element method. Comput Fluids 36: 136–146 · Zbl 1181.76099
[26] Tezduyar TE, Sathe S (2007) Modeling of fluid–structure interactions with the space–time finite elements: solution techniques. Int J Numer Methods Fluids 54: 855–900 · Zbl 1144.74044
[27] Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2007) Numerical investigation of the effect of hypertensive blood pressure on cerebral aneurysm–dependence of the effect on the aneurysm shape. Int J Numer Methods Fluids 54: 995–1009 · Zbl 1317.76107
[28] Manguoglu M, Sameh AH, Tezduyar TE, Sathe S (2008) A nested iterative scheme for computation of incompressible flows in long domains. Comput Mech 43: 73–80 · Zbl 1279.76024
[29] Tezduyar TE, Sathe S, Pausewang J, Schwaab M, Christopher J, Crabtree J (2008) Interface projection techniques for fluid– structure interaction modeling with moving-mesh methods. Comput Mech 43: 39–49 · Zbl 1310.74049
[30] Tezduyar TE, Sathe S, Schwaab M, Conklin BS (2008) Arterial fluid mechanics modeling with the stabilized space–time fluid–structure interaction technique. Int J Numer Methods Fluids 57: 601–629 · Zbl 1230.76054
[31] Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2008) Fluid–structure interaction modeling of a patient-specific cerebral aneurysm: influence of structural modeling. Comput Mech 43: 151–159 · Zbl 1169.74032
[32] Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid–structure interaction: theory, algorithms, and computations. Comput Mech 43: 3–37 · Zbl 1169.74015
[33] Isaksen JG, Bazilevs Y, Kvamsdal T, Zhang Y, Kaspersen JH, Waterloo K, Romner B, Ingebrigtsen T (2008) Determination of wall tension in cerebral artery aneurysms by numerical simulation. Stroke 39: 3172–3178
[34] Kuttler U, Wall WA (2008) Fixed-point fluid–structure interaction solvers with dynamic relaxation. Comput Mech 43: 61–72 · Zbl 1236.74284
[35] Dettmer WG, Peric D (2008) On the coupling between fluid flow and mesh motion in the modelling of fluid–structure interaction. Comput Mech 43: 81–90 · Zbl 1235.74272
[36] Tezduyar TE, Schwaab M, Sathe S (2009) Sequentially-Coupled Arterial Fluid–Structure Interaction (SCAFSI) technique. Comput Methods Appl Mech Eng 198: 3524–3533 · Zbl 1229.74100
[37] Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2009) Fluid–structure interaction modeling of blood flow and cerebral aneurysm: significance of artery and aneurysm shapes. Comput Methods Appl Mech Eng 198: 3613–3621 · Zbl 1229.74101
[38] Manguoglu M, Sameh AH, Saied F, Tezduyar TE, Sathe S (2009) Preconditioning techniques for nonsymmetric linear systems in computation of incompressible flows. J Appl Mech 76: 021204
[39] Bazilevs Y, Gohean JR, Hughes TJR, Moser RD, Zhang Y (2009) Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. Comput Methods Appl Mech Eng 198: 3534–3550 · Zbl 1229.74096
[40] Bazilevs Y, Hsu M-C, Benson D, Sankaran S, Marsden A (2009) Computational fluid–structure interaction: methods and application to a total cavopulmonary connection. Comput Mech 45: 77–89 · Zbl 1398.92056
[41] Takizawa K, Christopher J, Tezduyar TE, Sathe S (2010) Space–time finite element computation of arterial fluid–structure interactions with patient-specific data. Int J Numer Methods Biomed Eng 26: 101–116 · Zbl 1180.92023
[42] Tezduyar TE, Takizawa K, Christopher J (2009) Multiscale Sequentially-Coupled Arterial Fluid–Structure Interaction (SCAFSI) technique. In: Hartmann S, Meister A, Schaefer M, Turek S (eds) International workshop on fluid–structure interaction–theory, numerics and applications, Kassel University Press, pp 231–252
[43] Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Multiscale sequentially-coupled arterial FSI technique. Comput Mech 46: 17–29 · Zbl 1261.92010
[44] Takizawa K, Moorman C, Wright S, Christopher J, Tezduyar TE (2010) Wall shear stress calculations in space–time finite element computation of arterial fluid–structure interactions. Comput Mech 46: 31–41 · Zbl 1301.92019
[45] Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2010) Influence of wall thickness on fluid–structure interaction computations of cerebral aneurysms. Int J Numer Methods Biomed Eng 26: 336–347 · Zbl 1183.92050
[46] Manguoglu M, Takizawa K, Sameh AH, Tezduyar TE (2010) Solution of linear systems in arterial fluid mechanics computations with boundary layer mesh refinement. Comput Mech 46: 83–89 · Zbl 1301.76087
[47] Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2010) Role of 0D peripheral vasculature model in fluid–structure interaction modeling of aneurysms. Comput Mech 46: 43–52 · Zbl 1301.92020
[48] Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Liang X, Kvamsdal T, Brekken R, Isaksen J (2010) A fully-coupled fluid–structure interaction simulation of cerebral aneurysms. Comput Mech 46: 3–16 · Zbl 1301.92014
[49] Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Space–time finite element computation of complex fluid–structure interactions. Int J Numer Methods Fluids 64: 1201–1218 · Zbl 1427.76148
[50] Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Kvamsdal T, Hentschel S, Isaksen J (2010) Computational fluid–structure interaction: methods and application to cerebral aneurysms. Biomech Model Mechanobiol 9: 481–498
[51] Bazilevs Y, Hsu M-C, Akkerman I, Wright S, Takizawa K, Henicke B, Spielman T, Tezduyar TE (2011) 3D simulation of wind turbine rotors at full scale. Part I. Geometry modeling and aerodynamics. Int J Numer Methods Fluids 65: 207–235 · Zbl 1428.76086
[52] Bazilevs Y, Hsu M-C, Kiendl J, Wüchner R, Bletzinger K-U (2011) 3D simulation of wind turbine rotors at full scale. Part II. Fluid–structure interaction modeling with composite blades. Int J Numer Methods Fluids 65: 236–253 · Zbl 1428.76087
[53] Takizawa K, Moorman C, Wright S, Spielman T, Tezduyar TE (2011) Fluid–structure interaction modeling and performance analysis of the Orion spacecraft parachutes. Int J Numer Methods Fluids 65: 271–285 · Zbl 1428.76011
[54] Takizawa K, Wright S, Moorman C, Tezduyar TE (2011) Fluid–structure interaction modeling of parachute clusters. Int J Numer Methods Fluids 65: 286–307 · Zbl 1426.76312
[55] Manguoglu M, Takizawa K, Sameh AH, Tezduyar TE (2011) Nested and parallel sparse algorithms for arterial fluid mechanics computations with boundary layer mesh refinement. Int J Numer Methods Fluids 65: 135–149 · Zbl 1427.76285
[56] Tezduyar TE, Takizawa K, Brummer T, Chen PR (2011) Space–time fluid–structure interaction modeling of patient-specific cerebral aneurysms. Int J Numer Methods Biomed Eng (in press) · Zbl 1244.92036
[57] Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28: 1–44 · Zbl 0747.76069
[58] Tezduyar TE, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces–the deforming-spatial-domain/space–time procedure. I. The concept and the preliminary numerical tests. Comput Methods Appl Mech Eng 94: 339–351 · Zbl 0745.76044
[59] Tezduyar TE, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces–the deforming-spatial-domain/space–time procedure. II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94: 353–371 · Zbl 0745.76045
[60] Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43: 555–575 · Zbl 1032.76605
[61] Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov- Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 32: 199–259 · Zbl 0497.76041
[62] Tezduyar TE, Mittal S, Ray SE, Shih R (1992) Incompressible flow computations with stabilized bilinear and linear equal- order-interpolation velocity–pressure elements. Comput Methods Appl Mech Eng 95: 221–242 · Zbl 0756.76048
[63] Hughes TJR, Franca LP, Balestra M (1986) A new finite element formulation for computational fluid dynamics. V. Circumventing the Babuška–Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Comput Methods Appl Mech Eng 59: 85–99 · Zbl 0622.76077
[64] Hughes TJR, Hulbert GM (1988) Space–time finite element methods for elastodynamics: formulations and error estimates. Comput Methods Appl Mech Eng 66: 339–363 · Zbl 0616.73063
[65] Tezduyar TE, Sathe S, Pausewang J, Schwaab M, Christopher J, Crabtree J (2008) Fluid–structure interaction modeling of ringsail parachutes. Comput Mech 43: 133–142 · Zbl 1209.74022
[66] Takizawa K, Moorman C, Wright S, Purdue J, McPhail T, Chen PR, Warren J, Tezduyar TE (2011) Patient-specific arterial fluid–structure interaction modeling of cerebral aneurysms. Int J Numer Methods Fluids 65: 308–323 · Zbl 1203.92044
[67] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Comput Methods Appl Mech Eng 194: 4135–4195 · Zbl 1151.74419
[68] Bazilevs Y, Hughes TJR (2008) NURBS-based isogeometric analysis for the computation of flows about rotating components. Comput Mech 43: 143–150 · Zbl 1171.76043
[69] Hughes TJR (1995) Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles, and the origins of stabilized methods. Comput Methods Appl Mech Eng 127: 387–401 · Zbl 0866.76044
[70] Hughes TJR, Oberai AA, Mazzei L (2001) Large eddy simulation of turbulent channel flows by the variational multiscale method. Phys Fluids 13: 1784–1799 · Zbl 1184.76237
[71] Hughes TJR, Sangalli G (2007) Variational multiscale analysis: the fine-scale Green’s function, projection, optimization, localization, and stabilized methods. SIAM J Numer Anal 45: 539–557 · Zbl 1152.65111
[72] Bazilevs Y, Calo VM, Cottrel JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197: 173–201 · Zbl 1169.76352
[73] Bazilevs Y, Akkerman I (2010) Large eddy simulation of turbulent Taylor–Couette flow using isogeometric analysis and the residual–based variational multiscale method. J Comput Phys 229: 3402–3414 · Zbl 1290.76037
[74] Tezduyar TE, Takizawa K, Christopher J (2009) Sequentially- coupled FSI technique. In: Kvamsdal T, Pettersen B, Bergan P, Onate E, Garcia J (eds) Marine 2009, CIMNE, Barcelona, Spain · Zbl 1261.92010
[75] Tezduyar TE, Takizawa K, Christopher J, Moorman C, Wright S (2009) Interface projection techniques for complex FSI problems. In: Kvamsdal T, Pettersen B, Bergan P, Onate E, Garcia J (eds) Marine 2009, CIMNE, Barcelona, Spain, 2009
[76] Tezduyar TE, Osawa Y (2000) Finite element stabilization parameters computed from element matrices and vectors. Comput Methods Appl Mech Eng 190: 411–430 · Zbl 0973.76057
[77] Akin JE, Tezduyar T, Ungor M, Mittal S (2003) Stabilization parameters and Smagorinsky turbulence model. J Appl Mech 70: 2–9 · Zbl 1110.74311
[78] Tezduyar TE (2004) Finite element methods for fluid dynamics with moving boundaries and interfaces. In: Stein E, Borst RD, Hughes TJR (eds) Encyclopedia of computational mechanics, vol 3 Fluids, chapt 17. Wiley, New York
[79] Akin JE, Tezduyar TE (2004) Calculation of the advective limit of the SUPG stabilization parameter for linear and higher-order elements. Comput Methods Appl Mech Eng 193: 1909–1922 · Zbl 1067.76557
[80] Tezduyar TE (2007) Finite elements in fluids: stabilized formulations and moving boundaries and interfaces. Comput Fluids 36: 191–206 · Zbl 1177.76202
[81] Rispoli F, Corsini A, Tezduyar TE (2007) Finite element computation of turbulent flows with the discontinuity-capturing directional dissipation (DCDD). Comput Fluids 36: 121–126 · Zbl 1181.76098
[82] Catabriga L, Coutinho ALGA, Tezduyar TE (2005) Compressible flow SUPG parameters computed from element matrices. Commun Numer Methods Eng 21: 465–476 · Zbl 1329.76161
[83] Catabriga L, Coutinho ALGA, Tezduyar TE (2006) Compressible flow SUPG parameters computed from degree-of-freedom submatrices. Comput Mech 38: 334–343 · Zbl 1176.76061
[84] Hsu M-C, Bazilevs Y, Calo VM, Tezduyar TE, Hughes TJR (2010) Improving stability of stabilized and multiscale formulations in flow simulations at small time steps. Comput Methods Appl Mech Eng 199: 828–840 · Zbl 1406.76028
[85] Corsini A, Rispoli F, Tezduyar TE (2011) Stabilized finite element computation of NOx emission in aero-engine combustors. Int J Numer Methods Fluids 65: 254–270 · Zbl 1426.76240
[86] Tezduyar TE, Park YJ (1986) Discontinuity capturing finite element formulations for nonlinear convection–diffusion-reaction equations. Comput Methods Appl Mech Eng 59: 307–325 · Zbl 0593.76096
[87] Shakib F, Hughes TJR, Johan Z (1991) A new finite element formulation for computational fluid dynamics. X. The compressible euler and Navier–Stokes equations. Comput Methods Appl Mech Eng 89: 141–219
[88] Hughes TJR, Oberai AA (2003) Calculation of shear stress in Fourier–Galerkin formulations of turbulent channel flows: projection, the Dirichlet filter and conservation. J Comput Phys 188: 281–295 · Zbl 1020.76025
[89] Shakib F, Hughes TJR (1991) A new finite element formulation for computational fluid dynamics. IX. Fourier analysis of space–time and Galerkin/least-squares algorithms. Comput Methods Appl Mech Eng 87: 35–58 · Zbl 0760.76051
[90] Hughes TJR, Tezduyar TE (1984) Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations. Comput Methods Appl Mech Eng 45: 217–284 · Zbl 0542.76093
[91] Hughes TJR (1987) The Finite Element Method. Linear Static and Dynamic Finite Element Analysis. Prentice-Hall, Englewood Cliffs, NJ · Zbl 0634.73056
[92] Hauke G, Doweidar MH (2005) Fourier analysis of semi-discrete and space–time stabilized methods for the advective-diffusive-reactive equation. I. SUPG. Comput Methods Appl Mech Eng 194: 45–81 · Zbl 1112.76391
[93] Karypis G, Kumar V (1999) Parallel multilevel k-way partitioning scheme for irregular graphs. SIAM J Sci Comput 41: 278–300 · Zbl 0918.68073
[94] Saad Y, Schultz M (1986) GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput 7: 856–869 · Zbl 0599.65018
[95] Zalesak ST (1979) Fully multidimensional flux-corrected transport algorithms for fluids. J Comput Phys 31: 335–362 · Zbl 0416.76002
[96] Timmer WA (2009) An overview of NACA 6-digit airfoil series characteristics with reference to airfoils for large wind turbine blades. In: Proceedings of AIAA 47th aerospace sciences meeting, AIAA Paper 2009-268, Orlando, FL
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.