zbMATH — the first resource for mathematics

Solving multidimensional reactive flow problems with adaptive finite elements. (English) Zbl 1398.76096
Jäger, Willi (ed.) et al., Reactive flows, diffusion and transport. From experiments via mathematical modeling to numerical simulation and optimization. Final report of SFB (Collaborative Research Center) 359. Berlin: Springer (ISBN 3-540-28379-X/hbk). 93-112 (2007).
Summary: We describe recent developments in the design and implementation of finite element methods for the compressible Navier-Stokes equations modeling chemically reactive flows. The emphasize is on the low-Mach number regime including the limit case of incompressible flow. The most important ingredients are appropriate finite element discretizations, residual driven a posteriori mesh refinement, fully coupled defect-correction iteration for linearization, and optimal multigrid preconditioning. The potential of automatic mesh adaptation together with multilevel techniques is illustrated by 2D and 3D simulations of laminar methane combustion including detailed reaction mechanisms.
For the entire collection see [Zbl 1103.76004].

76M10 Finite element methods applied to problems in fluid mechanics
76V05 Reaction effects in flows
80A25 Combustion
Full Text: DOI
[1] 1.R. Becker and M. Braack. A finite element pressure gradient stabilization for the Stokes equations based on local projections. \(Galcolo\), 38(4):173-199, 2001. · Zbl 1008.76036
[2] 2.R. Becker, M. Braack, and T. Richter. Parallel multigrid on locally refined meshes. In W. Jäger et. al., eds., \(Reactive Flows, Diffusion and Transport\). Springer, Berlin, 2006. · Zbl 1398.76093
[3] 3.R. Becker and R. Rannacher. A feed-back approach to error control in finite element methods: Basic analysis and examples. \(East-West J. Numer. Math.\), 4:237-264, 1996. · Zbl 0868.65076
[4] 4.R. Becker and R. Rannacher. An optimal control approach to a posteriori error estimation in finite element methods. In A. Iserles, editor, \(Acta Numerica 2001\), volume 37, pages 1-225. Cambridge University Press, 2001. · Zbl 1105.65349
[5] 5.M. Braack. An Adaptive Finite Element Method for Reactive Flow Problems. PhD Dissertation, Heidelberg University, 1998. · Zbl 0896.76034
[6] 6.M. Braack and A. Ern. Coupling multimodeling with local mesh refinement for the numerical solution of laminar flames. \(Combust. Theory Modelling\), 8(4):771-788, 2004. · Zbl 1068.80534
[7] 7.M. Braack and R. Rannacher. Adaptive finite element methods for low-Mach-number flows with chemical reactions. In \(30th Computational Fluid Dynamics\), VKI LS 1999-03, H. Deconinck, ed., pages 1-93. von Karman Institute for Fluid Dynamics, Brussels, Belgium, 1999.
[8] 8.M. Braack and T. Richter. Mesh and model adaptivity for flow problems. In W. Jäger et. al., eds., \(Reactive Flows, Diffusion and Transport\). Springer, Berlin, 2005. · Zbl 1398.76092
[9] 9.A. Brooks and T. Hughes. Streamline upwind Petrov-Galerkin formulation for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. \(Comput. Methods Appl. Mech. Engrg.\), 32:199-259, 1982. · Zbl 0497.76041
[10] 10.G. Carey and J. Oden. \(Finite Elements, Computational Aspects\), volume III. Prentice-Hall, 1984. · Zbl 0558.73064
[11] 11.P. Ciarlet. \(Finite Element Methods for Elliptic Problems\). North-Holland, Amsterdam, 1978.
[12] 12.A. Ern and V. Giovangigli. Thermal diffusion effects in hydrogen-air and methane-air flames. \(Combust. Theory Modelling\), 2:349-372, 1998. · Zbl 0944.76092
[13] 13.GASCOIGNE. http://www.gascoigne.de.
[14] 14.J. O. Hirschfelder and C. F. Curtiss. \(Flame and Explosion Phenomena\). Williams and Wilkins Cp., Baltimore, 1949.
[15] 15.C. Johnson. \(Numerical Solution of Partial Differential Equations by the Finite Element Method\). Cambridge University Press, Cambridge, UK, 1987. · Zbl 0628.65098
[16] 16.C. Johnson and J. Saranen. Streamline diffusion methods for the incompressible euler and Navier-Stokes equations. \(Math. Comp.\), 47:1-18, 1986. · Zbl 0609.76020
[17] 17.Junkers Bosch Thermotechnik. Wandhängende Junkers Gas-Kesselthermen. Informationsbroschüre, Wernau, 1998.
[18] 18.S. Parmentier. \(Modellierung und Simulation eines Lamellenbrenners und eines Diffusionsreaktors zur Reduzierung von Schadstoffen\). PhD thesis, Universität Heidelberg, 2002.
[19] 19.S. Parmentier, M. Braack, U. Riedel, and J. Warnatz. Modeling of combustion in a lamella burner. \(Combustion Science and Technology\), 175(1):173-199, 2003.
[20] 20.T. Richter. Parallel multigrid for adaptive finite elements and its application to 3d flow problem. PhD Dissertation, Universität Heidelberg, to appear 2005.
[21] 21.M. D. Smooke. \(Numerical Modeling of Laminar Diffusion Flames\). Progress in Astronautics and Aeronautics, Vol. 135, ed.: E. S. Oran and J. P. Boris, 1991. · Zbl 0754.76086
[22] 22.G. T., G. Lube, M. Olshanskii, and J. Starcke. Stabilized finite element schmes with LBB-stable elements for incompressible flows. \(J. Comp. Appl. Math.\), 177:243-267, 2005. · Zbl 1063.76054
[23] 23.VisuSimple. http://visusimple.uni-hd.de.
[24] 24.J. Warnatz, U. Maas, and R. W. Dibble. \(Combustion\). Springer, New York, 1996.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.