×

zbMATH — the first resource for mathematics

Small and large deformation analysis with the \(p\)- and B-spline versions of the finite cell method. (English) Zbl 1398.74401
Summary: The finite cell method (FCM) is an embedded domain method, which combines the fictitious domain approach with high-order finite elements, adaptive integration, and weak imposition of unfitted Dirichlet boundary conditions. For smooth problems, FCM has been shown to achieve exponential rates of convergence in energy norm, while its structured cell grid guarantees simple mesh generation irrespective of the geometric complexity involved. The present contribution first unhinges the FCM concept from a special high-order basis. Several benchmarks of linear elasticity and a complex proximal femur bone with inhomogeneous material demonstrate that for small deformation analysis, FCM works equally well with basis functions of the \(p\)-version of the finite element method or high-order B-splines. Turning to large deformation analysis, it is then illustrated that a straightforward geometrically nonlinear FCM formulation leads to the loss of uniqueness of the deformation map in the fictitious domain. Therefore, a modified FCM formulation is introduced, based on repeated deformation resetting, which assumes for the fictitious domain the deformation-free reference configuration after each Newton iteration. Numerical experiments show that this intervention allows for stable nonlinear FCM analysis, preserving the full range of advantages of linear elastic FCM, in particular exponential rates of convergence. Finally, the weak imposition of unfitted Dirichlet boundary conditions via the penalty method, the robustness of FCM under severe mesh distortion, and the large deformation analysis of a complex voxel-based metal foam are addressed.

MSC:
74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74S30 Other numerical methods in solid mechanics (MSC2010)
76M10 Finite element methods applied to problems in fluid mechanics
74B20 Nonlinear elasticity
42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bathe K-J (1996) Finite element procedures. Prentice Hall, Upper Saddle River
[2] Hughes TJR (2000) The finite element method: linear static and dynamic finite element analysis. Dover, New York
[3] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194: 4135–4195 · Zbl 1151.74419
[4] Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, New York · Zbl 1378.65009
[5] Bazilevs Y, Calo VM, Cottrell JA, Evans JA, Hughes TJR, Lipton S, Scott MA, Sederberg TW (2010) Isogeometric analysis using T-splines. Comput Methods Appl Mech Eng 199: 229–263 · Zbl 1227.74123
[6] Neittaanmäki P, Tiba D (1995) An embedding domains approach in free boundary problems and optimal design. SIAM Control Optim 33(5): 1587–1602 · Zbl 0843.49024
[7] Peskin C (2002) The immersed boundary method. Acta Numer 11: 1–39 · Zbl 1123.74309
[8] Mittal R, Iaccarino G (2005) Immersed boundary methods. Ann Rev Fluid Mech 37: 239–261 · Zbl 1117.76049
[9] Löhner R, Cebral RJ, Camelli FE, Appanaboyina S, Baum JD, Mestreau EL, Soto OA (2008) Adaptive embedded and immersed unstructured grid techniques. Comput Methods Appl Mech Eng 197: 2173–2197 · Zbl 1158.76408
[10] Del Pino S, Pironneau O (2003) A fictitious domain based general PDE solver. In: Kuznetsov Y, Neittanmäki P, Pironneau O (eds) Numerical methods for scientific computing: variational problems and applications. CIMNE, Barcelona
[11] Glowinski R, Kuznetsov Y (2007) Distributed Lagrange multipliers based on fictitious domain method for second order elliptic problems. Comput Methods Appl Mech Eng 196: 1498–1506 · Zbl 1173.65369
[12] Ramière I, Angot P, Belliard M (2007) A fictitious domain approach with spread interface for elliptic problems with general boundary conditions. Comput Methods Appl Mech Eng 196: 766–781 · Zbl 1121.65364
[13] Bishop J (2003) Rapid stress analysis of geometrically complex domains using implicit meshing. Comput Mech 30: 460–478 · Zbl 1038.74626
[14] Baaijens FPT (2001) A fictitious domain/mortar element method for fluid-structure interaction. Int J Numer Methods Fluids 35: 743–761 · Zbl 0979.76044
[15] Farhat C, Hetmaniuk U (2002) A fictitious domain decomposition method for the solution of partially axisymmetric acoustic scattering problems. Part I: Dirichlet boundary conditions. Int J Numer Methods Eng 54: 1309–1332 · Zbl 1008.76039
[16] Haslinger J, Kozubek T, Kunisch K, Peichl G (2003) Shape optimization and fictitious domain approach for solving free boundary problems of bernoulli type. Comput Optim Appl 26: 231–251 · Zbl 1077.49030
[17] Burman E, Hansbo P (2010) Fictitious domain finite element methods using cut elements: I. A stabilized Lagrange multiplier method. Comput Methods Appl Mech Eng 199: 2680–2686 · Zbl 1231.65207
[18] Gerstenberger A, Wall WA (2010) An embedded Dirichlet formulation for 3D continua. Int J Numer Methods Eng 82: 537–563 · Zbl 1188.74056
[19] Burman E, Hansbo P (2011) Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method. Appl Numer Math. doi: 10.1016/j.apnum.2011.01.008 · Zbl 1316.65099
[20] Sukumar N, Chopp DL, Moës N, Belytschko T (2001) Modeling holes and inclusions by level sets in the extended finite-element method. Comput Methods Appl Mech Eng 190: 6183–6200 · Zbl 1029.74049
[21] Gerstenberger A, Wall WA (2008) An eXtended Finite Element Method/Lagrange multiplier based approach for fluid-structure interaction. Comput Methods Appl Mech Eng 197: 1699–1714 · Zbl 1194.76117
[22] Haslinger J, Renard Y (2009) A new fictitious domain approach inspired by the extended finite element method. SIAM J Numer Anal 47: 1474–1499 · Zbl 1205.65322
[23] Becker R, Burman E, Hansbo P (2011) A hierarchical NXFEM for fictitious domain simulations. Int J Numer Methods Eng 86(4–5): 54–559 · Zbl 1216.74018
[24] Bastian P, Engwer C (2009) An unfitted finite element method using discontinuous Galerkin. Int J Numer Methods Eng 79: 1557–1576 · Zbl 1176.65131
[25] Legay A, Wang HW, Belytschko T (2005) Strong and weak arbitrary discontinuities in spectral finite elements. Int J Numer Methods Eng 64: 991–1008 · Zbl 1167.74045
[26] Lui S (2009) Spectral domain embedding for elliptic PDEs in complex domains. J Comput Appl Math 225: 541–557 · Zbl 1160.65346
[27] Parussini L, Pediroda V (2009) Fictitious domain approach with hp-finite element approximation for incompressible fluid flow. J Comput Phys 228: 3891–3910 · Zbl 1169.76037
[28] Parvizian J, Düster A, Rank E (2007) Finite Cell Method: h- and p-extension for embedded domain methods in solid mechanics. Comput Mech 41: 122–133 · Zbl 1162.74506
[29] Düster A, Parvizian J, Yang Z, Rank E (2008) The Finite Cell Method for three-dimensional problems of solid mechanics. Comput Methods Appl Mech Eng 197: 3768–3782 · Zbl 1194.74517
[30] Szabó B, Babuška I (1991) Finite element analysis. Wiley, New York · Zbl 0792.73003
[31] Szabó B, Düster A, Rank E (2004) The p-version of the finite element method. In: Stein E, Borst R, Hughes TJR (eds) Encyclopedia of computational mechanics, vol 1. Wiley, Chichester, pp 119–139
[32] Rank E, Düster A, Schillinger D, Yang Z (2009) The Finite Cell Method: high order simulation of complex structures without meshing. In: Yuan Y, Cui J, Mang H (eds) Computational structural engineering. Springer, Heidelberg, pp 87–92
[33] Ruess M, Tal D, Trabelsi N, Yosibash Z, Rank E (2011) The Finite Cell Method for bone simulations: verification and validation. Biomech Model Mechanobiol. doi: 10.1007/s10237-011-0322-2
[34] Schillinger D, Düster A, Rank E (2011) The hp-d adaptive Finite Cell Method for geometrically nonlinear problems of solid mechanics. Int J Numer Methods Eng. doi: 10.1002/nme.3289 · Zbl 1242.74161
[35] Vos PEJ, van Loon R, Sherwin SJ (2008) A comparison of fictitious domain methods appropriate for spectral/hp element discretisations. Comput Methods Appl Mech Eng 197: 2275–2289 · Zbl 1158.76357
[36] Parvizian J, Düster A, Rank E (2011) Topology optimization using the Finite Cell Method. Opt Eng. doi: 10.1007/s11081-011-9159-x · Zbl 1293.74357
[37] Rank E, Kollmannsberger S, Sorger C, Düster A (2011) Shell Finite Cell Method: a high order fictitious domain approach for thin-walled structures. Comput Methods Appl Mech Eng 200: 3200–3209 · Zbl 1230.74232
[38] Vinci C (2009) Application of Dirichlet boundary conditions in the Finite Cell Method. Master thesis, Lehrstuhl für Computation in Engineering, Technische Universität München
[39] Zander N (2011) The Finite Cell Method for linear thermoelasticity. Master thesis, Lehrstuhl für Computation in Engineering, Technische Universität München
[40] Abedian A, Parvizian J, Düster A, Khademyzadeh H, Rank E (2010) The Finite Cell Method for elasto-plastic problems. In: Proceedings of the 10th international conference on computational structures technology, Valencia, 2010 · Zbl 1359.65245
[41] Cai Q, Kollmannsberger S, Mundani RP, Rank E (2011) The Finite Cell Method for solute transport problems in porous media. In: Proceedings of the 16th international conference on finite elements in flow problems, Munich, 2011
[42] Düster A, Sehlhorst HG, Rank E (2012) Numerical homogenization of heterogeneous and cellular materials utilizing the Finite Cell Method. Comp Mech. doi: 10.1007/s00466-012-0681-2 · Zbl 1386.74117
[43] Yang Z, Ruess M, Kollmannsberger S, Düster A, Rank E (2012) An efficient integration technique for the voxel-based Finite Cell Method. Int J Numer Methods Eng (accepted)
[44] Allaire G, Jouve F, Toader A (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194: 363–393 · Zbl 1136.74368
[45] Bonet J, Wood R (2008) Nonlinear continuum mechanics for finite element analysis. Cambridge University Press, Cambridge · Zbl 1142.74002
[46] Sueli E, Mayers DF (2003) An introduction to numerical analysis. Cambridge University Press, Cambridge
[47] Samet H (2006) Foundations of multidimensional and metric data structures. Morgan Kaufmann Publishers, San Francisco · Zbl 1139.68022
[48] Zohdi T, Wriggers P (2001) Aspects of the computational testing of the mechanical properties of microheterogeneous material samples. Int J Numer Methods Eng 50: 2573–2599 · Zbl 1098.74721
[49] Düster A (2001) High order finite elements for three-dimensional, thin-walled nonlinear continua. PhD thesis, Lehrstuhl für Bauinformatik, Technische Universität München, Shaker, Aachen
[50] Düster A, Bröker H, Rank E (2001) The p-version of the finite element method for three-dimensional curved thin walled structures. Int J Numer Methods Eng 52: 673–703 · Zbl 1058.74079
[51] Schillinger D, Kollmannsberger S, Mundani R-P, Rank E (2010) The Finite Cell Method for geometrically nonlinear problems of solid mechanics. IOP Conf Ser Mater Sci Eng 10:012170
[52] Schillinger D, Rank E (2011) An unfitted hp-adaptive finite element method based on hierarchical B-splines for interface problems of complex geometry. Comput Methods Appl Mech Eng 200(47–48):3358–3380 · Zbl 1230.74197
[53] Piegl LA, Tiller W (1997) The NURBS book (monographs in visual communication). Springer, New York · Zbl 0868.68106
[54] Rogers DF (2001) An introduction to NURBS with historical perspective. Morgan Kaufmann Publishers, San Francisco
[55] Höllig K (2003) Finite element methods with B-splines. Society for Industrial and Applied Mathematics, Philadelphia · Zbl 1020.65085
[56] Babuška I (1972) The finite element method with penalty. Math Comput 27(122): 221–228 · Zbl 0266.41011
[57] Zhu T, Atluri SN (1998) A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method. Comput Mech 21: 211– 222 · Zbl 0947.74080
[58] Babuška I, Banerjee U, Osborn JE (2002) Meshless and generalized finite element methods: a survey of some major results. In: Griebel M, Schweitzer MA (eds) Meshfree methods for partial differential equations. Lecture notes in computational science and engineering, vol 26. Springer, Berlin · Zbl 1012.65119
[59] Fernandez-Mendez S, Huerta A (2004) Imposing essential boundary conditions in mesh-free methods. Comput Methods Appl Mech Eng 193: 1257–1275 · Zbl 1060.74665
[60] Zienkiewicz OC, Taylor RL (2005) The finite element method vol 1: the basis. Butterworth-Heinemann, Oxford
[61] Hansbo A, Hansbo P (2002) An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems. Comput Methods Appl Mech Eng 191: 537–552 · Zbl 1035.65125
[62] Bazilevs Y, Hughes TJR (2007) Weak imposition of Dirichlet boundary conditions in fluid mechanics. Comput Fluids 36: 12–26 · Zbl 1115.76040
[63] Embar A, Dolbow J, Harari I (2010) Imposing Dirichlet boundary conditions with Nitsche’s method and spline-based finite elements. Int J Numer Methods Eng 83: 877–898 · Zbl 1197.74178
[64] Harari I, Dolbow J (2010) Analysis of an efficient finite element method for embedded interface problems. Comput Mech 46: 205–211 · Zbl 1190.65172
[65] Sadd MH (2009) Elasticity: theory, applications, and numerics. Academic Press, Oxford
[66] Keyak J, Falkinstein Y (2003) Comparison of in situ and in vitro CT-scan-based finite element model predictions of proximal femoral fracture load. J Med Eng Phys 25: 781–787
[67] Schileo E, Dall’Ara E, Taddei F, Malandrino A, Schotkamp T, Viceconti M (2008) An accurate estimation of bone density improves the accuracy of subject-specific finite element models. J Biomech 41: 2483–2491
[68] Bungartz HJ, Griebel M, Zenger C (2004) Introduction to computer graphics. Charles River Media, Hingham
[69] Novelline R (1997) Squire’s fundamentals of radiology. Harvard University Press, Cambridge
[70] Yosibash Z, Padan R, Joskowicz L, Milgrom C (2007) A CT-based high-order finite element analysis of the human proximal femur compared to in-vitro experiments. J Biomech Eng 129: 297–309
[71] Trabelsi N, Yosibash Z, Milgrom C (2009) Validation of subject-specific automated p-FE analysis of the proximal femur. J Biomech 42: 234–241
[72] Belytschko T, Liu WK, Moran B (2006) Nonlinear finite elements for continua and structures. Wiley, New York
[73] de Souza Neto EA, Perić D, Owen DRJ (2008) Computational methods for plasticity: theory and applications. Wiley, New York
[74] Wriggers P (2008) Nonlinear finite element methods. Springer, Berlin · Zbl 1153.74001
[75] Holzapfel G (2000) Nonlinear solid mechanics. A continuum approach for engineering. Wiley, New York · Zbl 0980.74001
[76] Noël AT, Szabó B (1997) Formulation of geometrically non-linear problems in the spatial reference frame. Int J Numer Methods Eng 40: 1263–1280 · Zbl 0887.73066
[77] Düster A, Hartmann S, Rank E (2003) p-FEM applied to finite isotropic hyperelastic bodies. Comput Methods Appl Mech Eng 192: 5147–5166 · Zbl 1053.74043
[78] Sehlhorst HG, Jänicke R, Düster A, Rank E, Steeb H, Diebels S (2009) Numerical investigations of foam-like materials by nested high-order finite element methods. Comput Mech 45: 45–59 · Zbl 1398.74402
[79] Krause R, Mücke R, Rank E (1995) hp-version finite elements for geometrically non-linear problems. Commun Numer Methods Eng 11: 887–897 · Zbl 0835.73075
[80] Bertsekas DP (1996) Constrained optimization and lagrange multiplier methods. Athina Scientific, Nashua
[81] Trilinos Version 10.4, Sandia National Laboratories, Los Alamos, NM. http://trilinos.sandia.gov/
[82] MKL PARDISO. http://www.intel.com/software/products/mkl . 16 January 2012
[83] FlagShyp 08 Version 2.30, Nonlinear FE solver developed by J. Bonet and R. Wood. http://www.flagshyp.com
[84] Visual DoMesh 2008 Version 1.1, Mesh generator developed by C. Sorger, Chair for Computation in Engineering, Technische Universität München
[85] Netgen Version 4.9.13, Tetrahdral mesh generator developed by J. Schöberl. http://sourceforge.net/projects/netgen-mesher
[86] ParaView Version 3.8.1, Open-source scientific visualization package. Kitware Inc., Clifton Park, NY. http://www.paraview.org
[87] Dong S, Yosibash Z (2009) A parallel spectral element method for dynamic three-dimensional nonlinear elasticity problems. Comput Struct 87(1–2): 59–72
[88] Elguedj T, Bazilevs Y, Calo VM, Hughes TJR (2008) B-bar and F-bar projection methods for nearly incompressible linear and nonlinear elasticity and plasticity using higher-order NURBS elements. Comput Methods Appl Mech Eng 197: 2732–2762 · Zbl 1194.74518
[89] Lipton S, Evans JA, Bazilevs Y, Elguedj T, Hughes TJR (2010) Robustness of isogeometric structural discretizations under severe mesh distortion. Comput Methods Appl Mech Eng 199: 357–373 · Zbl 1227.74112
[90] Banhart J (2001) Manufacture, characterization and application of cellular metals and metal foams. Prog Mater Sci 46: 559–632
[91] Zohdi T, Wriggers P (2005) Introduction to computational micromechanics. Springer, Berlin · Zbl 1085.74001
[92] Lapack Version 3.2.2. (2010) Linear algebra package. http://www.netlib.org/lapack/
[93] Chapman B, Jost G, van der Pas R (2008) Using OpenMP. Portable shared memory parallel programming. MIT Press, Cambridge
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.