×

zbMATH — the first resource for mathematics

Nitsche’s method for two and three dimensional NURBS patch coupling. (English) Zbl 1398.74379
Summary: We present a Nitsche’s method to couple non-conforming two and three-dimensional non uniform rational b-splines (NURBS) patches in the context of isogeometric analysis. We present results for linear elastostatics in two and and three-dimensions. The method can deal with surface-surface or volume-volume coupling, and we show how it can be used to handle heterogeneities such as inclusions. We also present preliminary results on modal analysis. This simple coupling method has the potential to increase the applicability of NURBS-based isogeometric analysis for practical applications.

MSC:
74S05 Finite element methods applied to problems in solid mechanics
65D17 Computer-aided design (modeling of curves and surfaces)
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74S30 Other numerical methods in solid mechanics (MSC2010)
65D07 Numerical computation using splines
Software:
ParaView; ISOGAT
PDF BibTeX Cite
Full Text: DOI arXiv
References:
[1] Piegl LA, Tiller W (1996) The NURBS book. Springer, Berlin · Zbl 0828.68118
[2] Rogers DF (2001) An introduction to NURBS with historical perspective. Academic Press, San Diego
[3] Hughes, TJR; Cottrell, JA; Bazilevs, Y, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput Methods Appl Mech Eng, 194, 4135-4195, (2005) · Zbl 1151.74419
[4] Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, Chichester · Zbl 1378.65009
[5] Kagan, P; Fischer, A; Bar-Yoseph, PZ, New B-spline finite element approach for geometrical design and mechanical analysis, Int J Numer Methods Eng, 41, 435-458, (1998) · Zbl 0912.73058
[6] Kagan, P; Fischer, A, Integrated mechanically based CAE system using B-spline finite elements, Comput Aided Des, 32, 539-552, (2000) · Zbl 1206.65050
[7] Cirak, F; Ortiz, M; Schröder, P, Subdivision surfaces: a new paradigm for thin-shell finite-element analysis, Int J Numer Methods Eng, 47, 2039-2072, (2000) · Zbl 0983.74063
[8] Uhm, TK; Youn, SK, T-spline finite element method for the analysis of shell structures, Int J Numer Methods Eng, 80, 507-536, (2009) · Zbl 1176.74198
[9] Kiendl, J; Bletzinger, K-U; Linhard, J; Wüchner, R, Isogeometric shell analysis with Kirchhoff-love elements, Comput Methods Appl Mech Eng, 198, 3902-3914, (2009) · Zbl 1231.74422
[10] Benson, DJ; Bazilevs, Y; Hsu, MC; Hughes, TJR, Isogeometric shell analysis: the Reissner-Mindlin shell, Comput Methods Appl Mech Eng, 199, 276-289, (2010) · Zbl 1227.74107
[11] Benson, DJ; Bazilevs, Y; Hsu, M-C; Hughes, TJR, A large deformation, rotation-free, isogeometric shell, Comput Methods Appl Mech Eng, 200, 1367-1378, (2011) · Zbl 1228.74077
[12] Beirão da Veiga, L; Buffa, A; Lovadina, C; Martinelli, M; Sangalli, G, An isogeometric method for the Reissner-Mindlin plate bending problem, Comput Methods Appl Mech Eng, 209-212, 45-53, (2012) · Zbl 1243.74101
[13] Echter, R; Oesterle, B; Bischoff, M, A hierarchic family of isogeometric shell finite elements, Comput Methods Appl Mech Eng, 254, 170-180, (2013) · Zbl 1297.74071
[14] Benson, DJ; Hartmann, S; Bazilevs, Y; Hsu, M-C; Hughes, TJR, Blended isogeometric shells, Comput Methods Appl Mech Eng, 255, 133-146, (2013) · Zbl 1297.74114
[15] Kiendl, J; Bazilevs, Y; Hsu, M-C; Wüchner, R; Bletzinger, K-U, The bending strip method for isogeometric analysis of Kirchhoff-love shell structures comprised of multiple patches, Comput Methods Appl Mech Eng, 199, 2403-2416, (2010) · Zbl 1231.74482
[16] Temizer, İ; Wriggers, P; Hughes, TJR, Contact treatment in isogeometric analysis with NURBS, Comput Methods Appl Mech Eng, 200, 1100-1112, (2011) · Zbl 1225.74126
[17] Jia, L, Isogeometric contact analysis: geometric basis and formulation for frictionless contact, Comput Methods Appl Mech Eng, 200, 726-741, (2011) · Zbl 1225.74097
[18] Temizer, İ; Wriggers, P; Hughes, TJR, Three-dimensional mortar-based frictional contact treatment in isogeometric analysis with NURBS, Comput Methods Appl Mech Eng, 209-212, 115-128, (2012) · Zbl 1243.74130
[19] Lorenzis, L; Temizer, İ; Wriggers, P; Zavarise, G, A large deformation frictional contact formulation using NURBS-bases isogeometric analysis, Int J Numer Methods Eng, 87, 1278-1300, (2011) · Zbl 1242.74104
[20] Matzen, ME; Cichosz, T; Bischoff, M, A point to segment contact formulation for isogeometric, NURBS based finite elements, Comput Methods Appl Mech Eng, 255, 27-39, (2013) · Zbl 1297.74084
[21] Wall, WA; Frenzel, MA; Cyron, C, Isogeometric structural shape optimization, Comput Methods Appl Mech Eng, 197, 2976-2988, (2008) · Zbl 1194.74263
[22] Manh, ND; Evgrafov, A; Gersborg, AR; Gravesen, J, Isogeometric shape optimization of vibrating membranes, Comput Methods Appl Mech Eng, 200, 1343-1353, (2011) · Zbl 1228.74062
[23] Qian, X; Sigmund, O, Isogeometric shape optimization of photonic crystals via coons patches, Comput Methods Appl Mech Eng, 200, 2237-2255, (2011) · Zbl 1230.74149
[24] Qian, X, Full analytical sensitivities in NURBS based isogeometric shape optimization, Comput Methods Appl Mech Eng, 199, 2059-2071, (2010) · Zbl 1231.74352
[25] Simpson, RN; Bordas, SPA; Trevelyan, J; Rabczuk, T, A two-dimensional isogeometric boundary element method for elastostatic analysis, Comput Methods Appl Mech Eng, 209-212, 87-100, (2012) · Zbl 1243.74193
[26] Scott, MA; Simpson, RN; Evans, JA; Lipton, S; Bordas, SPA; Hughes, TJR; Sederberg, TW, Isogeometric boundary element analysis using unstructured T-splines, Comput Methods Appl Mech Eng, 254, 197-221, (2013) · Zbl 1297.74156
[27] Gomez, H; Hughes, TJR; Nogueira, X; Calo, VM, Isogeometric analysis of the isothermal Navier-Stokes-Korteweg equations, Comput Methods Appl Mech Eng, 199, 1828-1840, (2010) · Zbl 1231.76191
[28] Bazilevs, Y; Akkerman, I, Large eddy simulation of turbulent Taylor-Couette flow using isogeometric analysis and the residual-based variational multiscale method, J Comput Phys, 229, 3402-3414, (2010) · Zbl 1290.76037
[29] Nielsen, PN; Gersborg, AR; Gravesen, J; Pedersen, NL, Discretizations in isogeometric analysis of Navier-Stokes flow, Comput Methods Appl Mech Eng, 200, 3242-3253, (2011) · Zbl 1230.76042
[30] Bazilevs, Y; Calo, VM; Hughes, TJR; Zhang, Y, Isogeometric fluid-structure interaction: theory, algorithms, and computations, Comput Mech, 43, 3-37, (2008) · Zbl 1169.74015
[31] Bazilevs, Y; Gohean, JR; Hughes, TJR; Moser, RD; Zhang, Y, Patient-specific isogeometric fluid-structure interaction analysis of thoracic aortic blood flow due to implantation of the jarvik 2000 left ventricular assist device, Comput Methods Appl Mech Eng, 198, 3534-3550, (2009) · Zbl 1229.74096
[32] Gómez, H; Calo, VM; Bazilevs, Y; Hughes, TJR, Isogeometric analysis of the Cahn-Hilliard phase-field model, Comput Methods Appl Mech Eng, 197, 4333-4352, (2008) · Zbl 1194.74524
[33] Verhoosel, CV; Scott, MA; Hughes, TJR; Borst, R, An isogeometric analysis approach to gradient damage models, Int J Numer Methods Eng, 86, 115-134, (2011) · Zbl 1235.74320
[34] Fischer, P; Klassen, M; Mergheim, J; Steinmann, P; Müller, R, Isogeometric analysis of 2D gradient elasticity, Comput Mech, 47, 325-334, (2010) · Zbl 1398.74329
[35] Masud, A; Kannan, R, B-splines and NURBS based finite element methods for Kohn-Sham equations, Comput Methods Appl Mech Eng, 241-244, 112-127, (2012) · Zbl 1353.82065
[36] Cottrell, JA; Reali, A; Bazilevs, Y; Hughes, TJR, Isogeometric analysis of structural vibrations, Comput Methods Appl Mech Eng, 195, 5257-5296, (2006) · Zbl 1119.74024
[37] Hughes, TJR; Reali, A; Sangalli, G, Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: comparison of p-method finite elements with k-method NURBS, Comput Methods Appl Mech Eng, 197, 4104-4124, (2008) · Zbl 1194.74114
[38] Thai, CH; Nguyen-Xuan, H; Nguyen-Thanh, N; Le, T-H; Nguyen-Thoi, T; Rabczuk, T, Static, free vibration, and buckling analysis of laminated composite Reissner-Mindlin plates using NURBS-based isogeometric approach, Int J Numer Methods Eng, 91, 571-603, (2012) · Zbl 1253.74007
[39] Wang, D; Liu, W; Zhang, H, Novel higher order mass matrices for isogeometric structural vibration analysis, Comput Methods Appl Mech Eng, 260, 63-77, (2013) · Zbl 1286.74051
[40] Evans, JA; Bazilevs, Y; Babuška, I; Hughes, TJR, N-widths, sup-infs, and optimality ratios for the k-version of the isogeometric finite element method, Comput Methods Appl Mech Eng, 198, 1726-1741, (2009) · Zbl 1227.65093
[41] Verhoosel, CV; Scott, MA; Borst, R; Hughes, TJR, An isogeometric approach to cohesive zone modeling, Int J Numer Methods Eng, 87, 336-360, (2011) · Zbl 1242.74169
[42] Moës, N; Dolbow, J; Belytschko, T, A finite element method for crack growth without remeshing, Int J Numer Methods Eng, 46, 131-150, (1999) · Zbl 0955.74066
[43] Luycker, E; Benson, DJ; Belytschko, T; Bazilevs, Y; Hsu, MC, X-FEM in isogeometric analysis for linear fracture mechanics, Int J Numer Methods Eng, 87, 541-565, (2011) · Zbl 1242.74105
[44] Ghorashi, SS; Valizadeh, N; Mohammadi, S, Extended isogeometric analysis for simulation of stationary and propagating cracks, Int J Numer Methods Eng, 89, 1069-1101, (2012) · Zbl 1242.74119
[45] Tambat, A; Subbarayan, G, Isogeometric enriched field approximations, Comput Methods Appl Mech Eng, 245-246, 1-21, (2012) · Zbl 1354.65044
[46] Borden, MJ; Verhoosel, CV; Scott, MA; Hughes, TJR; Landis, CM, A phase-field description of dynamic brittle fracture, Comput Methods Appl Mech Eng, 217-220, 77-95, (2012) · Zbl 1253.74089
[47] Nguyen, VP; Nguyen-Xuan, H, High-order B-splines based finite elements for delamination analysis of laminated composites, Compos Struct, 102, 261-275, (2013)
[48] Nguyen VP, Kerfriden P, Bordas S (2013) Isogeometric cohesive elements for two and three dimensional composite delamination analysis. Compos Part B, 2013. http://arxiv.org/abs/1305.2738 · Zbl 1253.74089
[49] Takacs, T; Jüttler, B, Existence of stiffness matrix integrals for singularly parameterized domains in isogeometric analysis, Comput Methods Appl Mech Eng, 200, 3568-3582, (2011) · Zbl 1239.65014
[50] Xu, G; Mourrain, B; Duvigneau, R; Galligo, A, Parameterization of computational domain in isogeometric analysis: methods and comparison, Comput Methods Appl Mech Eng, 200, 2021-2031, (2011) · Zbl 1228.65232
[51] Cohen, E; Martin, T; Kirby, RM; Lyche, T; Riesenfeld, RF, Analysis-aware modeling: understanding quality considerations in modeling for isogeometric analysis, Comput Methods Appl Mech Eng, 199, 334-356, (2010) · Zbl 1227.74109
[52] Schmidt, R; Kiendl, J; Bletzinger, K-U; Wüchner, R, Realization of an integrated structural design process: analysis-suitable geometric modelling and isogeometric analysis, Comput Vis Sci, 13, 315-330, (2010) · Zbl 1216.65019
[53] Zhou X and Lu J (2005) Nurbs-based galerkin method and application to skeletal muscle modeling. In Proceedings of the 2005 ACM symposium on solid and physical modeling, SPM ’05. ACM, New York, pp 71-78 · Zbl 0955.74066
[54] Xu, G; Mourrain, B; Duvigneau, R; Galligo, A, Optimal analysis-aware parameterization of computational domain in 3D isogeometric analysis, Comput Aided Des, 45, 812-821, (2013)
[55] Xu, G; Mourrain, B; Duvigneau, R; Galligo, A, Analysis-suitable volume parameterization of multi-block computational domain in isogeometric applications, Comput Aided Des, 45, 395-404, (2012)
[56] Sederberg, TW; Zheng, J; Bakenov, A; Nasri, A, T-splines and T-nurccs, ACM Trans Gr, 22, 477-484, (2003)
[57] Bazilevs, Y; Calo, VM; Cottrell, JA; Evans, JA; Hughes, TJR; Lipton, S; Scott, MA; Sederberg, TW, Isogeometric analysis using T-splines, Comput Methods Appl Mech Eng, 199, 229-263, (2010) · Zbl 1227.74123
[58] Dörfel, MR; Jüttler, B; Simeon, B, Adaptive isogeometric analysis by local h-refinement with T-splines, Comput Methods Appl Mech Eng, 199, 264-275, (2010) · Zbl 1227.74125
[59] Scott, MA; Borden, MJ; Verhoosel, CV; Sederberg, TW; Hughes, TJR, Isogeometric finite element data structures based on Bézier extraction of T-splines, Int J Numer Methods Eng, 88, 126-156, (2011) · Zbl 1242.65243
[60] Nguyen-Thanh, N; Nguyen-Xuan, H; Bordas, SPA; Rabczuk, T, Isogeometric analysis using polynomial splines over hierarchical t-meshes for two-dimensional elastic solids, Comput Methods Appl Mech Eng, 200, 1892-1908, (2011) · Zbl 1228.74091
[61] Nguyen-Thanh, N; Kiendl, J; Nguyen-Xuan, H; Wüchner, R; Bletzinger, KU; Bazilevs, Y; Rabczuk, T, Rotation free isogeometric thin shell analysis using PHT-splines, Comput Methods Appl Mech Eng, 200, 3410-3424, (2011) · Zbl 1230.74230
[62] Rosolen, A; Arroyo, M, Blending isogeometric analysis and local maximum entropy meshfree approximants, Comput Methods Appl Mech Eng, 264, 95-107, (2013) · Zbl 1286.65025
[63] Nguyen VP, Kerfriden P, Claus S, Bordas SPA (2013) Nitsche’s method for mixed dimensional analysis: conforming and non-conforming continuum-beam and continuum-plate coupling. Comput Methods Appl Mech Eng 2013. http://arxiv.org/abs/1308.2910 · Zbl 1229.74096
[64] Nitsche, J, Uber ein variationsprinzip zur losung von Dirichlet-problemen bei verwendung von teilraumen, die keinen randbedingungen unterworfen sind, Abhandlungen aus dem Mathematischen Seminar der Universitat Hamburg, 36, 9-15, (1971) · Zbl 0229.65079
[65] Hansbo, A; Hansbo, P, An unfitted finite element method, based on nitsche’s method, for elliptic interface problems, Comput Methods Appl Mech Eng, 191, 5537-5552, (2002) · Zbl 1035.65125
[66] Dolbow, J; Harari, I, An efficient finite element method for embedded interface problems, Int J Numer Methods Eng, 78, 229-252, (2009) · Zbl 1183.76803
[67] Becker, R; Hansbo, P; Stenberg, R, A finite element method for domain decomposition with non-matching grids, ESAIM Math Modell Numer Anal, 37, 209-225, (2003) · Zbl 1047.65099
[68] Hansbo, A; Hansbo, P; Larson, MG, A finite element method on composite grids based on nitsche’s method, ESAIM Math Modell Numer Anal, 37, 495-514, (2003) · Zbl 1031.65128
[69] Sanders, J; Puso, MA, An embedded mesh method for treating overlapping finite element meshes, Int J Numer Methods Eng, 91, 289-305, (2012) · Zbl 1246.74064
[70] Sanders, JD; Laursen, T; Puso, MA, A Nitsche embedded mesh method, Comput Mech, 49, 243-257, (2011) · Zbl 1366.74075
[71] Burman, E; Hansbo, P, Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method, Appl Numer Math, 62, 328-341, (2012) · Zbl 1316.65099
[72] Fernández-Méndez, S; Huerta, A, Imposing essential boundary conditions in mesh-free methods, Comput Methods Appl Mech Eng, 193, 1257-1275, (2004) · Zbl 1060.74665
[73] Ruess M, Schillinger D, Bazilevs Y, Varduhn V, Rank E (2013) Weakly enforced essential boundary conditions for NURBS-embedded and trimmed NURBS geometries on the basis of the finite cell method. Accepted for publication, Int J Numer Methods Eng · Zbl 1352.65643
[74] Baiges, J; Codina, R; Henke, F; Shahmiri, S; Wall, WA, A symmetric method for weakly imposing Dirichlet boundary conditions in embedded finite element meshes, Int J Numer Methods Eng, 90, 636-658, (2012) · Zbl 1242.76108
[75] Embar, A; Dolbow, J; Harari, I, Imposing Dirichlet boundary conditions with nitsche’s method and spline-based finite elements, Int J Numer Methods Eng, 83, 877-898, (2010) · Zbl 1197.74178
[76] Burman, E; Fernández, MA, Stabilization of explicit coupling in fluidstructure interaction involving fluid incompressibility, Comput Methods Appl Mech Eng, 198, 766-784, (2009) · Zbl 1229.76045
[77] Bazilevs, Y; Hughes, TJR, Weak imposition of Dirichlet boundary conditions in fluid mechanics, Comput Fluids, 36, 12-26, (2007) · Zbl 1115.76040
[78] Ruess, M; Schillinger, D; Bazilevs, Y; Rank, E, Weakly enforced essential boundary conditions for NURBS-embedded and trimmed NURBS geometries on the basis of the finite cell method, Int J Numer Methods Eng, 95, 811-846, (2013) · Zbl 1352.65643
[79] Wriggers, P; Zavarise, G, A formulation for frictionless contact problems using a weak form introduced by Nitsche, Comput Mech, 41, 407-420, (2008) · Zbl 1162.74419
[80] Sanders, JD; Dolbow, JE; Laursen, TA, On methods for stabilizing constraints over enriched interfaces in elasticity, Int J Numer Methods Eng, 78, 1009-1036, (2009) · Zbl 1183.74313
[81] Griebel, M; Schweitzer, MA; Hildebrandt, S (ed.); Karcher, H (ed.), A particle-partition of unity method—part V: boundary conditions, 519-542, (2002), Berlin · Zbl 1033.65102
[82] Rhino. CAD modeling and design toolkit. www.rhino3d.com · Zbl 1228.74077
[83] Hughes TJR (2000) The finite element method: linear static and dynamic finite element analysis. Dover Publications, Mineola
[84] Nayroles, B; Touzot, G; Villon, P, Generalizing the finite element method: diffuse approximation and diffuse elements, Comput Mech, 10, 307-318, (1992) · Zbl 0764.65068
[85] Belytschko T, Lu YY, Gu L (1994) Element-free galerkin methods. Int J Numer Methods Eng 37(2):229-256 · Zbl 0796.73077
[86] Liu, WK; Jun, S; Zhang, YF, Reproducing kernel particle methods, Int J Numer Methods Fluids, 20, 1081-1106, (1995) · Zbl 0881.76072
[87] Chen, JS; Wu, CT; Yoon, S; You, Y, A stabilized conforming nodal integration for Galerkin meshfree methods, Int J Numer Methods Eng, 50, 435-466, (2001) · Zbl 1011.74081
[88] Nguyen, VP; Rabczuk, T; Bordas, S; Duflot, M, Meshless methods: a review and computer implementation aspects, Math Comput Simul, 79, 763-813, (2008) · Zbl 1152.74055
[89] Borden, MJ; Scott, MA; Evans, JA; Hughes, TJR, Isogeometric finite element data structures based on Bézier extraction of NURBS, Int J Numer Methods Eng, 87, 15-47, (2011) · Zbl 1242.74097
[90] Henderson A (2007) ParaView guide, a parallel visualization application. Kitware Inc
[91] Ugural AC, Fenster SK (1995) Advanced strength and applied elasticity, 3rd edn. Prentice-Hall, Englewood Cliffs
[92] Nguyen VP, Bordas SPA, Rabczuk T (2013) Isogeometric analysis: an overview and computer implementation aspects. Comput Aided Geom Des. http://arxiv.org/abs/1205.2129
[93] Hughes, TJR; Reali, A; Sangalli, G, Efficient quadrature for NURBS-based isogeometric analysis, Comput Methods Appl Mech Eng, 199, 301-313, (2010) · Zbl 1227.65029
[94] Auricchio, F; Calabro, F; Hughes, TJR; Reali, A; Sangalli, G, A simple algorithm for obtaining nearly optimal quadrature rules for NURBS-based isogeometric analysis, Comput Methods Appl Mech Eng, 249-252, 15-27, (2012) · Zbl 1348.65059
[95] Fritz, A; Hüeber, S; Wohlmuth, BI, A comparison of mortar and Nitsche techniques for linear elasticity, CALCOLO, 41, 115-137, (2004) · Zbl 1099.65123
[96] Sukumar, N; Chopp, DL; Moës, N; Belytschko, T, Modelling holes and inclusions by level sets in the extended finite element method, Comput Methods Appl Mech Eng, 190, 6183-6200, (2000) · Zbl 1029.74049
[97] Sevilla, R; Fernández-Méndez, S; Huerta, A, NURBS-enhanced finite element method (NEFEM), Int J Numer Methods Eng, 76, 56-83, (2008) · Zbl 1162.65389
[98] Tornincasa S, Bonisoli E, Kerfriden P, Brino M (2014) Investigation of crossing and veering phenomena in an isogeometric analysis framework. In Proceedings of IMAC XXXII, Orlando pp 3-6 Feb 2014 · Zbl 0983.74063
[99] Ruess M, Schillinger D, Bazilevs Y, Ozcan A, Rank E (2013) Weakly enforced boundary and coupling conditions in isogeometric analysis. In Proceedings of 12th US national congress on computational mechanics. Raleigh, North Carolina, July 22-25 · Zbl 1352.65643
[100] Noels, L; Radovitzky, R, A general discontinuous Galerkin method for finite hyperelasticity. formulation and numerical applications, Int J Numer Methods Eng, 68, 64-97, (2006) · Zbl 1145.74039
[101] Radovitzky, R; Seagraves, A; Tupek, M; Noels, L, A scalable 3D fracture and fragmentation algorithm based on a hybrid, discontinuous Galerkin, cohesive element method, Comput Methods Appl Mech Eng, 200, 326-344, (2011) · Zbl 1225.74105
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.