×

zbMATH — the first resource for mathematics

Simulation of finite-width process zone in concrete-like materials by means of a regularized extended finite element model. (English) Zbl 1398.74302
Summary: Experimental tests carried out on concrete specimens show that a fracture process zone with finite width develops in front of the crack tip. Currently, the only way of modelling a finite-width process zone is to adopt a non-local continuum damage model. This choice, however, precludes the description of macro-cracks, which emerge during the late stage of the cracking process. The eXtended finite element method is a powerful tool for modelling the cracking process. The proposed eXtended finite element approach can simulate in a unified and smooth way both the formation of a process zone with finite width and its subsequent collapse into a macro-crack. Weak points of existing formulations, such as the necessity of ad hoc strategies in order to get mesh-independent results, and the sudden loss of stiffness at the transition from the continuous to the discontinuous regime, are overcome. In the case of tensile cracking, effectiveness is tested through comparisons with numerical and experimental results.

MSC:
74S05 Finite element methods applied to problems in solid mechanics
74R10 Brittle fracture
74A45 Theories of fracture and damage
74R05 Brittle damage
74R20 Anelastic fracture and damage
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Horii H, Ichinomiya T (1991) Observation of fracture process zone by laser speckle technique and governing mechanism in fracture of concrete. Int J Fract 51: 19–29 · doi:10.1007/BF00020850
[2] Bažant Z, Pijaudier-Cabot G (1989) Measurement of characteristic length of nonlocal continuum. J Eng Mech 115: 755–767 · doi:10.1061/(ASCE)0733-9399(1989)115:4(755)
[3] Wittmann FH, Hu XZ (1991) Fracture process zone in cementitious materials. Int J Fract 51: 3–18 · doi:10.1007/BF00020849
[4] Mihashi H, Nomura N (1996) Correlation between characteristics of fracture process zone and tension-softening properties of concrete. Nucl Eng Des 165: 359–376 · doi:10.1016/0029-5493(96)01205-8
[5] Vermilye J, Scholz M (1998) The process zone: a microstructural view of fault growth. J Geophys Res Solid Earth 103: 12223–12237 · doi:10.1029/98JB00957
[6] Otsuka K, Date H (2000) Fracture process zone in concrete tension specimen. Eng Fract Mech 5: 111–131 · doi:10.1016/S0013-7944(99)00111-3
[7] Trunk B, Wittmann FH (2001) Influence of size on fracture energy of concrete. Mater Struct 34: 260–265
[8] Hariri K (2002) Application of espi-technique for the assessment of mineral building materials. ASCE engng mech conference, 2–5 June 2002, New York
[9] Muralidhara S, Prasad BK, Eskandari H, Karihaloo BL (2010) Fracture process zone size and true fracture energy of concrete using acoustic emission. Constr Build Mater 24: 479– 486 · doi:10.1016/j.conbuildmat.2009.10.014
[10] Benvenuti E, Borino G, Tralli A (2002) A thermodynamically consistent nonlocal formulation for damaging materials. Eur J Mech A Solids 21: 535–553 · Zbl 1038.74006 · doi:10.1016/S0997-7538(02)01220-2
[11] Benvenuti E, Loret B, Tralli A (2004) A unified multifield formulation in nonlocal damage. Eur J Mech A Solids 23: 539–559 · Zbl 1059.74050 · doi:10.1016/j.euromechsol.2004.03.005
[12] Benvenuti E, Tralli A (2003) Iterative LCP solvers for non-local loading–unloading conditions. Int J Numer Methods Eng 58: 2343–2370 · Zbl 1047.74053 · doi:10.1002/nme.856
[13] Benvenuti E, Tralli A (2006) The fast Gauss transform for non-local integral FE models. Commun Numer Methods Eng 22: 505–533 · Zbl 1105.65345 · doi:10.1002/cnm.827
[14] Simone A, Askes H, Sluys LJ (2004) Incorrect initiation and propagation of failure in non-local and gradient-enhanced media. Int J Solids Struct 41: 351–363 · Zbl 1059.74542 · doi:10.1016/j.ijsolstr.2003.09.020
[15] Le Bellego C, Dubec JF, Pijaudier-Cabot G, Gerarde B (2003) Calibration of nonlocal damage model from size effect tests. Eur J Mech A Solids 22: 33–46 · Zbl 1018.74526 · doi:10.1016/S0997-7538(02)01255-X
[16] Skarzynsky L, Tejchman J (2010) Calculations of fracture process zones on meso-scale in notched concrete beams subjected to three-point bending. Eur J Mech A Solids 29: 746–760 · doi:10.1016/j.euromechsol.2010.02.008
[17] Iacono C, Sluys LJ, van Mier JGM (2008) Calibration of a higher-order continuum model using global and local data. Eng Fract Mech 75: 4642–4665 · doi:10.1016/j.engfracmech.2008.05.009
[18] Bažant Z, Oh BH (1983) Crack band theory for fracture of concrete. Mater Struct 16: 155–177
[19] de Borst R, Remmers JJC, Needleman A, Abellan MA (2004) Discrete vs smeared crack models for concrete fracture: bridging the gap. Int J Numer Methods Eng 28: 583–607 · Zbl 1086.74044 · doi:10.1002/nag.374
[20] Hillerborgh A, Modeer M, Petersson PE (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem Concr Res 6: 773–782 · doi:10.1016/0008-8846(76)90007-7
[21] Simo JC, Oliver J, Armero F (1993) An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids. Comput Mech 12: 277–296 · Zbl 0783.73024 · doi:10.1007/BF00372173
[22] Oliver J, Cervera M, Manzoli O (1999) Strong discontinuities and continuum plasticity models: the strong discontinuity approach. Int J Plast 15: 319–351 · Zbl 1057.74512 · doi:10.1016/S0749-6419(98)00073-4
[23] Melenk JM, Babuska I (1996) The partition of unity finite element method: basic theory and applications. Comput Methods Appl Mech Eng 39: 289–314 · Zbl 0881.65099 · doi:10.1016/S0045-7825(96)01087-0
[24] Moes N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46: 131–150 · Zbl 0955.74066 · doi:10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
[25] Moes N, Belytschko T (2002) Extended finite element method for cohesive crack growth. Eng Fract Mech 69: 813–833 · doi:10.1016/S0013-7944(01)00128-X
[26] Stazi FL, Budyn E, Chessa J, Belytschko T (2003) An extended finite element method with higher-order elements for curved cracks. Comput Mech 31: 38–48 · Zbl 1038.74651 · doi:10.1007/s00466-002-0391-2
[27] Ginera E, Sukumar N, Tarancóna JE, Fuenmayora FJ (2009) An Abaqus implementation of the extended finite element method. Eng Fract Mech 76: 347–368 · doi:10.1016/j.engfracmech.2008.10.015
[28] Fries TP, Belytschko T (2010) The extended/generalized finite element method: an overview of the method and its applications. Int J Numer Methods Eng 84: 253–304 · Zbl 1202.74169
[29] Belytschko T, Gracie R, Ventura G (2009) A review of extended/generalized finite element methods for material modeling. Model Simul Mater Sci Eng 17. ISSN:0965-0393. doi: 10.1088/0965-0393/17/4/043001 · Zbl 1195.74201
[30] Zhang HW, Wu JK, Fu ZD (2010) Extended multiscale finite element method for elasto-plastic analysis of 2D periodic lattice truss materials. Comput Mech 45: 623–635 · Zbl 1398.74429 · doi:10.1007/s00466-010-0475-3
[31] Moes N, Stolz C, Bernard PE, Chevaugeon N (2011) A level set based model for damage growth: the thick level set approach. Int J Numer Methods Eng 86 86: 358–380 · Zbl 1235.74302 · doi:10.1002/nme.3069
[32] Mazars J, Pijaudier-Cabot G (1996) From damage mechanics to fracture mechanics and conversely: a combined approach. Int J Solids Struct 33: 3327–3342 · Zbl 0929.74091 · doi:10.1016/0020-7683(96)00015-7
[33] Jirásek M, Zimmermann T (1996) Embedded crack model. Part II: combination with smeared crack. Int J Numer Methods Eng 50: 1291–1305 · Zbl 1013.74068 · doi:10.1002/1097-0207(20010228)50:6<1291::AID-NME12>3.0.CO;2-Q
[34] Areias PMA, Belytschko T (2005) Analysis of three-dimensional crack initiation and propagation using the extended finite element method. Int J Numer Methods Eng 63: 760–788 · Zbl 1122.74498 · doi:10.1002/nme.1305
[35] Comi C, Mariani S, Perego U (2007) An extended FE strategy for transition form continuum damage to mode I cohesive crack propagation. Int J Numer Anal Methods Geomech 31: 213–238 · Zbl 1108.74052 · doi:10.1002/nag.537
[36] Simone A, Wells GN, Sluys LJ (2003) From continuous to discontinuous failure in a gradient-enhanced continuum damage model. Comput Methods Appl Mech Eng 192: 4581–4607 · Zbl 1054.74719 · doi:10.1016/S0045-7825(03)00428-6
[37] Patzák B, Jirásek M (2003) Process zone resolution by extended finite elements. Eng Fract Mech 70: 957–977 · doi:10.1016/S0013-7944(02)00160-1
[38] Benvenuti E, Ventura G, Tralli A (2008) A regularized XFEM framework for the transition from continuous to discontinuous displacements. Int J Numer Methods Eng 74: 911–944 · Zbl 1158.74479 · doi:10.1002/nme.2196
[39] Benvenuti E (2008) A regularized XFEM framework for cohesive interfaces. Comput Methods Appl Mech Eng 197: 4367–4378 · Zbl 1194.74364 · doi:10.1016/j.cma.2008.05.012
[40] Iarve EV (2003) Mesh independent modelling of cracks by using higher order shape functions. Int J Numer Methods Eng 56: 869–882 · Zbl 1078.74658 · doi:10.1002/nme.596
[41] Abbas S, Alizada A, Fries TP (2010) The XFEM for high-gradient solutions in convection-dominated problems. Int J Numer Methods Eng 82: 1044–1072 · Zbl 1188.76224 · doi:10.1002/nme.2815
[42] Miehe C, Welschinger F, Hofacker M (2010) Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int J Numer Methods Eng 73: 1273–1406 · Zbl 1202.74014 · doi:10.1002/nme.2861
[43] Chen Z (2000) Simulating the evolution of localiztion based on the diffusion of damage. Int J Solids Struct 37: 7465–7479 · Zbl 1001.74098 · doi:10.1016/S0020-7683(00)00207-9
[44] Benvenuti E (2004) Damage integration in the strain space. Int J Solids Struct 41: 3167–3191 · Zbl 1069.74003 · doi:10.1016/j.ijsolstr.2004.01.024
[45] Simo JC, Hughes TJR (1998) Computational inelasticity. Springer, Berlin · Zbl 0934.74003
[46] Cazes F, Coret M, Combescure A, Gravouil A (2009) A thermodynamic method for the construction of a cohesive law from a non-local damage model. Int J Solids Struct 46: 1476–1490 · Zbl 1236.74013 · doi:10.1016/j.ijsolstr.2008.11.019
[47] Ventura G (2006) On the elimination of quadrature subcells for discontinuous functions in the extended finite-element method. Int J Numer Methods Eng 66: 761–795 · Zbl 1110.74858 · doi:10.1002/nme.1570
[48] Mousavi SE, Sukumar N (2011) Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons. Comput Mech 47: 535–554 · Zbl 1221.65078 · doi:10.1007/s00466-010-0562-5
[49] Xiao QZ, Karihaloo BL, Xiu XL (2007) Incremental-secant modulus iteration scheme and stress recovery process in quasi-brittle materials using XFEM. Int J Numer Methods Eng 69: 2606–2635 · Zbl 1194.74483 · doi:10.1002/nme.1866
[50] Jager P, Steinmann P, Kuhl E (2008) On local tracking algorithms for the simulation of three-dimensional discontinuities. Comput Mech 42: 395–406 · Zbl 1173.74044 · doi:10.1007/s00466-008-0249-3
[51] Cervera M, Chiumenti M, Codina R (2010) Mixed stabilized finite element methods in nonlinear solid mechanics. Part II: strain localization. Comput Methods Appl Mech Eng 199: 2571–2589 · Zbl 1231.74405 · doi:10.1016/j.cma.2010.04.005
[52] Denarié E, Saouma VE, Iocco A, Varelas D (2001) Concrete fracture process zone characterization with fiber optics. J Eng Mech 127: 494–502 · doi:10.1061/(ASCE)0733-9399(2001)127:5(494)
[53] Brühwiler E, Wittmann FH (1990) The wedge splitting test, a new method of performing stable fracture tests. Eng Fract Mech 35: 117–125 · doi:10.1016/0013-7944(90)90189-N
[54] Tornberg AK (2002) Multi-dimensional quadrature of singular and discontinuous functions. BIT Numer Math 42: 644–669 · Zbl 1021.65010 · doi:10.1023/A:1021988001059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.