×

zbMATH — the first resource for mathematics

Local scaling asymptotics for the Gutzwiller trace formula in Berezin-Toeplitz quantization. (English) Zbl 1398.32023
This paper is concerned with semiclassical aspects of the Berezin-Toeplitz quantization of a Kähler manifold \((M, J, 2\omega )\). The Gutzwiller trace formula deals with the asymptotics of the trace of the distributional kernel of a smoothed spectral projector relative to a spectral band of width \(O(\hbar )\) around an energy value.
The autor studies a Gutzwiller-Toeplitz kernel from the point of view of asymptotically concentration along appropriate classical loci defined by the dynamics, with an explicit description of the exponential decay in normal directions.

MSC:
32J27 Compact Kähler manifolds: generalizations, classification
32A25 Integral representations; canonical kernels (Szegő, Bergman, etc.)
47B35 Toeplitz operators, Hankel operators, Wiener-Hopf operators
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Berezin, FA, General concept of quantization, Commun. Math. Phys., 40, 153-174, (1975) · Zbl 1272.53082
[2] Bleher, P; Shiffman, B; Zelditch, S, Universality and scaling of correlations between zeros on complex manifolds, Invent. Math., 142, 351-395, (2000) · Zbl 0964.60096
[3] Bleher, P; Shiffman, B; Zelditch, S, Universality and scaling of zeros on symplectic manifolds, Random Matrices Appl., 40, 31-69, (2001) · Zbl 1129.58303
[4] Bordemann, M; Meinrenken, E; Schlichenmaier, M, Toeplitz quantization of Kähler manifolds and gl(N), \(N→ ∞ \) limits, Commun. Math. Phys., 165, 281-296, (1994) · Zbl 0813.58026
[5] Borthwick, D; Paul, T; Uribe, A, Legendrian distributions with applications to relative Poincaré series, Invent. Math., 122, 359-402, (1995) · Zbl 0859.58015
[6] Borthwick, D; Paul, T; Uribe, A, Semiclassical spectral estimates for Toeplitz operators, Ann. Inst. Fourier (Grenoble), 48, 1189-1229, (1998) · Zbl 0920.58059
[7] Boutet de Monvel, L; Guillemin, V, The spectral theory of Toeplitz operators, Ann. Math. Stud., 99, 3-160, (1981) · Zbl 0469.47021
[8] Boutet de Monvel, L; Sjöstrand, J, Sur la singularité des noyaux de Bergman et de szegö, Astérisque, 34-35, 123-164, (1976) · Zbl 0344.32010
[9] Cahen, M; Gutt, S; Rawnsley, J, Quantization of Kähler manifolds. I. geometric interpretation of berezin’s quantization, J. Geom. Phys., 7, 45-62, (1990) · Zbl 0719.53044
[10] Charles, L, Berezin-Toeplitz operators, a semi-classical approach, Commun. Math. Phys., 239, 1-28, (2003) · Zbl 1059.47030
[11] Charles, L.: Quantization of compact symplectic manifolds. http://arxiv.org/abs/1409.8507 · Zbl 1357.81127
[12] Christ, M.: Slow off-diagonal decay for Szegö kernels associated to smooth Hermitian line bundles. Harmonic Analysis at Mount Holyoke (South Hadley, MA, 2001). Contemporary Mathematics, vol. 320, pp. 77-89. American Mathematical Society, Providence, RI (2003) · Zbl 1043.32023
[13] Duistermaat, J.J.: Fourier integral operators. Reprint of the 1996 edition based on the original lecture notes published in 1973. Modern Birkhäuser Classics. Birkhäuser/Springer, New York (2011) · Zbl 1141.58018
[14] Guillemin, V, Star products on compact pre-quantizable symplectic manifolds, Lett. Math. Phys., 35, 85-89, (1995) · Zbl 0842.58041
[15] Hörmander, L.: The Analysis of Linear Partial Differential Operators. I. Distribution Theory and Fourier Analysis, Second Edition, Springer Study edn. Springer, Berlin (1990) · Zbl 0712.35001
[16] Karabegov, A; Schlichenmaier, M, Identification of Berezin-Toeplitz deformation quantization, J. Reine Angew. Math., 540, 49-76, (2001) · Zbl 0997.53067
[17] Ma, X., Marinescu, G.: Holomorphic Morse Inequalities and Bergman Kernels. Progress in Mathematics 254. Birkhauser Verlag, Basel (2007) · Zbl 1135.32001
[18] Ma, X; Marinescu, G, Generalized Bergman kernels on symplectic manifolds, Adv. Math., 217, 1756-1815, (2008) · Zbl 1141.58018
[19] Ma, X., Zhang, W.: Bergman kernels and symplectic reduction. Astérisque No. 318 (2008) · Zbl 1171.32001
[20] McDuff, D., Salamon, D.: Introduction to Symplectic Topology. Oxford Mathematical Monographs, 2nd edn. Oxford University Press, New York (1998) · Zbl 1066.53137
[21] Melin, A., Sjöstrand, J.: Fourier integral operators with complex-valued phase functions. Fourier integral operators and partial differential equations (Colloq. Internat., Univ. Nice, Nice, 1974). Lecture Notes in Mathematics, vol. 459, pp. 120-223. Springer, Berlin (1975) · Zbl 0719.53044
[22] Paoletti, R, Szegö kernels, Toeplitz operators, and equivariant fixed point formulae, J. Anal. Math., 106, 209236, (2008) · Zbl 1160.32004
[23] Paoletti, R, Local asymptotics for slowly shrinking spectral bands of a Berezin-Toeplitz operator, Int. Math. Res. Not., 5, 1165-1204, (2011) · Zbl 1230.47055
[24] Paoletti, R, Asymptotics of szegö kernels under Hamiltonian torus actions, Isr. J. Math., 191, 363-403, (2011) · Zbl 1252.32030
[25] Paoletti, R, Local trace formulae and scaling asymptotics for general quantized Hamiltonian flows, J. Math. Phys., 53, 023501, (2012) · Zbl 1274.81149
[26] Paoletti, R, Scaling asymptotics for quantized Hamiltonian flows, Int. J. Math., 23, 1250102, (2012) · Zbl 1255.53066
[27] Schlichenmaier, M.: Berezin-Toeplitz quantization for compact Kähler manifolds. A review of results. Adv. Math. Phys., Art. ID 927280 (2010) · Zbl 1207.81049
[28] Shiffman, B; Zelditch, S, Asymptotics of almost holomorphic sections of ample line bundles on symplectic manifolds, J. Reine Angew. Math., 544, 181-222, (2002) · Zbl 1007.53058
[29] Zelditch, S, Index and dynamics of quantized contact transformations, Ann. Inst. Fourier (Grenoble), 47, 305-363, (1997) · Zbl 0865.47018
[30] Zelditch, S, Szegö kernels and a theorem of Tian, Int. Math. Res. Not., 6, 317-331, (1998) · Zbl 0922.58082
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.