×

The free energy principle for action and perception: a mathematical review. (English) Zbl 1397.91535

Summary: The ‘free energy principle’ (FEP) has been suggested to provide a unified theory of the brain, integrating data and theory relating to action, perception, and learning. The theory and implementation of the FEP combines insights from Helmholtzian ‘perception as inference’, machine learning theory, and statistical thermodynamics. Here, we provide a detailed mathematical evaluation of a suggested biologically plausible implementation of the FEP that has been widely used to develop the theory. Our objectives are (i) to describe within a single article the mathematical structure of this implementation of the FEP; (ii) provide a simple but complete agent-based model utilising the FEP and (iii) to disclose the assumption structure of this implementation of the FEP to help elucidate its significance for the brain sciences.

MSC:

91E30 Psychophysics and psychophysiology; perception
82B30 Statistical thermodynamics
91-04 Software, source code, etc. for problems pertaining to game theory, economics, and finance
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Adams, R. A.; Shipp, S.; Friston, K. J., Predictions not commands: active inference in the motor system, Brain Structure and Function, 218, 3, 611-643 (2013)
[2] Adkins, A., Equilibrium thermodynamics (1983), Cambridge University Press: Cambridge University Press Cambridge
[3] Balaji, B.; Friston, K. J., Bayesian state estimation using generalized coordinates, (SPIE defense, security, and sensing (2011), International Society for Optics and Photonics), 80501Y-1
[4] Bastos, A. M.; Usrey, W. M.; Adams, R. A.; Mangun, G. R.; Fries, P.; Friston, K. J., Canonical microcircuits for predictive coding, Neuron, 76, 4, 695-711 (2012)
[5] Bogacz, R., A tutorial on the free-energy framework for modelling perception and learning, Journal of Mathematical Psychology, 76, B, 198-211 (2017) · Zbl 1396.91638
[6] Bubic, A.; von Cramon, D. Y.; Schubotz, R. I., Prediction, Cognition and the Brain, Frontiers of Human Neuroscience, 4 (2010), 25-25
[7] Carhart-Harris, R. L.; Friston, K. J., The default-mode, ego-functions and free-energy: a neurobiological account of Freudian ideas, Brain, 133, 4, 1265-1283 (2010)
[8] Casella, G.; Berger, R., Statistical inference (2002), Duxbury: Duxbury Pacific Grove
[9] Clark, A., Whatever next? predictive brains, situated agents, and the future of cognitive science, Behavioral and Brain Sciences, 36, 03, 181-204 (2013)
[10] Cover, T. M.; Thomas, J. A., Elements of information theory (1991), Wiley-Interscience: Wiley-Interscience New York · Zbl 0762.94001
[11] Dayan, P.; Hinton, G. E.; Neal, R. M.; Zemel, R. S., The Helmholtz machine, Neural Computation, 7, 889-904 (1995)
[12] Elias, P., Predictive coding-I, IRE Transactions on Information Theory, 1, 1, 16-24 (1955)
[13] Felleman, D. J.; Van Essen, D. C., Distributed hierarchical processing in the primate cerebral cortex, Cerebral Cortex, 1, 1-47 (1991)
[14] Friston, K. J., A theory of cortical responses, Philosophical Transactions of the Royal Society, Series B (Biological Sciences), 360, 815-836 (2005)
[15] Friston, K. J., Hierarchical models in the brain, PLoS Computational Biology, 4 (2008), e1000211-e1000211
[16] Friston, K. J., Variational filtering, NeuroImage, 41, 747-766 (2008)
[17] Friston, K. J., The free-energy principle: A rough guide to the brain?, Trends in Cognitive Science, 13, 293-301 (2009)
[18] Friston, K. J., Is the free-energy principle neurocentric?, Nature Reviews Neuroscience, 11, 8 (2010), 605-605
[19] Friston, K. J., Some free-energy puzzles resolved: response to thornton, Trends in Cognitive Science, 14, 54 (2010)
[20] Friston, K. J., The free-energy principle: a unified brain theory?, Nature Reviews. Neuroscience, 11, 127-138 (2010)
[21] Friston, K. J., What is optimal about motor control?, Neuron, 72, 3, 488-498 (2011)
[22] Friston, K. J., Life as we know it, Journal of the Royal Society Interface, 10, 86 (2013)
[23] Friston, K. J.; Adams, R.; Perrinet, L.; Breakspear, M., Perceptions as hypotheses: Saccades as experiments, Frontiers in Psychology, 3, 151 (2012)
[24] Friston, K. J.; Daunizeau, J.; Kiebel, S. J., Reinforcement learning or active inference?, PLoS One, 4 (2009), e6421-e6421
[25] Friston, K. J.; Daunizeau, J.; Kilner, J.; Kiebel, S. J., Action and behavior: A free-energy formulation, Biological Cybernetics, 102, 3, 227-260 (2010)
[26] Friston, K. J.; FitzGerald, T.; Rigoli, F.; Schwartenbeck, P.; Pezzulo, G., Active inference: A process theory, Neural Computation (2016)
[27] Friston, K. J.; Kiebel, S., Cortical circuits for perceptual inference, Neural Networks, 22, 1093-1104 (2009)
[28] Friston, K. J.; Kiebel, S., Predictive Coding Under the Free-energy Principle, Philosophical Transactions of the Royal Society, Series B (Biological Sciences), 364, 1211-1221 (2009)
[29] Friston, K. J.; Kiebel, S., Predictive coding under the free-energy principle, Philosophical Transactions of the Royal Society, Series B (Biological Sciences, 364, 1521, 1211-1221 (2009)
[30] Friston, K. J.; Kilner, J.; Harrison, L., A free Energy Principle for the Brain, Journal de Physiologie (Paris), 100, 70-87 (2006)
[31] Friston, K. J.; Mattout, J.; Trujillo-Barreto, N.; Ashburner, J.; Penny, W., Variational free energy and the Laplace approximation, Neuroimage, 34, 220-234 (2007)
[32] Friston, K. J.; Stephan, K. E., Free-energy and the brain, Synthese, 159, 417-458 (2007)
[33] Friston, K. J.; Stephan, K.; Li, B.; Daunizeau, J., Generalised filtering, Mathematical Problems in Engineering, 2010 (2010) · Zbl 1189.94032
[34] Friston, K. J.; Trujillo-Barreto, N.; Daunizeau, J., DEM: a variational treatment of dynamic systems, Neuroimage, 41, 849-885 (2008)
[35] Haykin, S.; Network, N., A comprehensive foundation, Neural Networks, 2, 2004 (2004)
[36] Hinton, G. E., Learning multiple layers of representation, Trends in Cognitive Sciences, 11, 10, 428-434 (2007)
[37] Hinton, G. E.; Zemel, R., Autoencoders, minimum description length, and helmholtz free energy, (Cowan, G. T.J. D.; Alspector, J., Advances in neural information processing systems 6 (1994), Morgan Kaufmann: Morgan Kaufmann San Mateo, CA), 3-10
[38] Hinton, G. E.; Zemel, R. S., Autoencoders, minimum description length, and helmholtz free energy, Advances in Neural Information Processing Systems (1994), 3-3
[39] Huang, K., Statistical mechanics (1987), John Wiley and Sons: John Wiley and Sons New York · Zbl 1041.82500
[40] Joffily, M.; Coricelli, G., Emotional valence and the free-energy principle, PLoS Computational Biology, 9, 6, e1003094 (2013)
[41] Kass, R. E.; Steffey, D., Approximate Bayesian inference in conditionally independent hierarchical models (parametric empirical Bayes models), Journal of the American Statistical Association, 407, 717-726 (1989)
[42] Knill, D. C.; Pouget, A., The Bayesian brain: the role of uncertainty in neural coding and computation, Trends in Neurosciences, 27, 12, 712-719 (2004)
[43] Knill, D. C.; Pouget, A., The Bayesian brain: the role of uncertainty in neural coding and computation, Trends in Neuroscience, 27, 712-719 (2004)
[44] Neal, R.; Hinton, G. E., A view of the EM algorithm that justifies incremental, sparse, and other variants, (Jordan, M., Learning in Graphical Models (1998), MIT Press: MIT Press Cambridge, MA), 355-368 · Zbl 0916.62019
[45] Otworowska, M.; Kwisthout, J.; van Rooij, I., Counter-factual mathematics of counterfactual predictive models, Frontiers in Psychology, 5 (2014)
[46] Pezzulo, G.; Rigoli, F.; Friston, K. J., Active inference, homeostatic regulation and adaptive behavioural control, Progress in Neurobiology, 134, 17-35 (2015)
[47] Pio-Lopez, L.; Nizard, A.; Friston, K. J.; Pezzulo, G., Active inference and robot control: a case study, Journal of the Royal Society Interface, 13, 122, 20160616 (2016)
[48] Rao, R. P.; Ballard, D. H., Predictive coding in the visual cortex: a Functional interpretation of some extra-classical receptive-field effects, Nature Neuroscience, 2, 79-87 (1999)
[49] Seth, A. K., A predictive processing theory of sensorimotor contingencies: explaining the puzzle of perceptual presence and its absence in synesthesia, Cognitive Neuroscience, 5, 2, 97-118 (2014)
[50] Seth, A. K., The cybernetic Bayesian brain: From interoceptive inference to sensorimotor contingencies (2015), Open MIND. Frankfurt a. M: MIND Group
[51] Thrun, S.; Burgard, W.; Fox, D., Probabilistic robotics (2005), MIT press · Zbl 1081.68703
[52] Von Helmholtz, H.; Southall, J. P.C., Treatise on physiological optics. Vol. 3 (2005), Courier Corporation
[53] Wolpert, D. M., Computational approaches to motor control, Trends in Cognitive Sciences, 1, 6, 209-216 (1997)
[54] Zeki, S.; Shipp, S., The functional logic of cortical connections, Nature, 335, 311-317 (1988)
[55] Zemel, R.; Hinton, G. E., Learning population codes by minimizing description length, Neural Computation, 7, 549-564 (1995)
[56] Zwanzig, R., Nonequilibrium statistical mechanics (2001), Oxford University Press: Oxford University Press Oxford · Zbl 1267.82001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.