×

zbMATH — the first resource for mathematics

Truncated leximin solutions. (English) Zbl 1397.91033
Summary: This paper shows that three classic properties for bargaining solutions in an environment with a variable number of agents – anonymity (AN), individual monotonicity (IM), and consistency (CONS) – characterize a one-parameter family of Truncated Leximin solutions. Given a non-negative and possibly infinite \(\alpha\), an \(\alpha\)-truncated leximin solution gives each agent the minimum of \(\alpha\) and their Leximin solution payoff.

MSC:
91A12 Cooperative games
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Chen, M. A., Individual monotonicity and the leximin solution, Econom. Theory, 15, 2, 353-365, (2000) · Zbl 0959.91015
[2] Chun, Y.; Peters, H. J.M., The lexicographic Egalitarian solution, Cah. CERO, 30, 149-156, (1989) · Zbl 0665.90101
[3] Hammond, P. J., Equity, arrow’s conditions, and rawls’ difference principle, Econometrica, 44, 4, 793-804, (1976) · Zbl 0331.90015
[4] Harsanyi, J. C., A bargaining model for the cooperative \(N\)-person game, (Tucker, A. W.; Luce, R. D., Contributions to the Theory of Games (AM-40), Volume IV, (1959), Princeton University Press Princeton) · Zbl 0084.36501
[5] Imai, H., Individual monotonicity and lexicographic maxmin solution, Econometrica, 51, 2, 389-401, (1983) · Zbl 0495.90091
[6] Kalai, E., Proportional solutions to bargaining situations: interpersonal utility comparisons, Econometrica, 45, 7, 1623-1630, (1977) · Zbl 0371.90135
[7] Kalai, E.; Smorodinsky, M., Other solutions to nash’s bargaining problem, Econometrica, 43, 3, 513-518, (1975) · Zbl 0308.90053
[8] Lensberg, T., Stability and the Nash solution, J. Econom. Theory, 45, 2, 330-341, (1988) · Zbl 0657.90106
[9] Lensberg, T.; Thomson, W., Characterizing the Nash bargaining solution without Pareto-optimality, Soc. Choice Welf., 5, 2-3, 247-259, (1988) · Zbl 0666.90096
[10] Li, D., Bargaining with history-dependent preferences, J. Econom. Theory, 136, 1, 695-708, (2007) · Zbl 1281.91092
[11] Luce, R. D.; Raiffa, H., Games and decisions: introduction and critical survey, (1957), Dover Publications United States · Zbl 0084.15704
[12] Nash, J. F., The bargaining problem, Econometrica, 18, 2, 155-162, (1950) · Zbl 1202.91122
[13] Nieto, J., The lexicographic Egalitarian solution on economic environments, Soc. Choice Welf., 9, 3, 203-212, (1992) · Zbl 0763.90002
[14] Nydegger, R. V.; Owen, G., Two-person bargaining: an experimental test of the Nash axioms, Internat. J. Game Theory, 3, 4, 239-249, (1974) · Zbl 0304.90130
[15] Rachmilevitch, S., Efficiency-free characterizations of the Kalai-smorodinsky bargaining solution, Oper. Res. Lett., 42, 3, 246-249, (2014) · Zbl 1408.91093
[16] Rawls, J., A theory of justice, (1971), Belknap Press of Harvard University Press Cambridge, MA
[17] Roth, A. E., Individual rationality and nash’s solution to the bargaining problem, Math. Oper. Res., 2, 1, 64-65, (1977) · Zbl 0413.90089
[18] Roth, A. E., (Axiomatic Models of Bargaining, Lecture Notes in Economic and Mathematical Systems, (1979), Springer-Verlag Berlin and Heidelberg GmbH & Co. K Germany) · Zbl 0408.90087
[19] Roth, A. E., Proportional solutions to the bargaining problem, Econometrica, 47, 3, 775-778, (1979) · Zbl 0427.90093
[20] Royden, H. L.; Fitzpatrick, P. M., Real analysis, (2010), Pearson Education United States
[21] Shapley, L. S., Utility comparisons and the theory of games, (La Décision, (1969), Éditions du CNRS Paris), 251-263 · Zbl 0218.90088
[22] Thomson, W., Two characterizations of the raiffa solution, Econom. Lett., 6, 3, 225-231, (1980)
[23] Thomson, W., Problems of fair division and the Egalitarian solution, J. Econom. Theory, 31, 2, 211-226, (1983) · Zbl 0525.90007
[24] Thomson, W., Truncated Egalitarian solutions, Soc. Choice Welf., 1, 1, 25-32, (1984) · Zbl 0558.90105
[25] Thomson, W., Introduction, (Thomson, W., Bargaining and the Theory of Cooperative Games: John Nash and Beyond, (2010), Edward Elgar Publishing United Kingdom)
[26] Thomson, W.; Lensberg, T., Axiomatic theory of bargaining with a variable number of agents, (1989), Cambridge University Press United Kingdom · Zbl 0745.90089
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.