×

Causal holographic information. (English) Zbl 1397.81422

Summary: We propose a measure of holographic information based on a causal wedge construction. The motivation behind this comes from an attempt to understand how boundary field theories can holographically reconstruct spacetime. We argue that given the knowledge of the reduced density matrix in a spatial region of the boundary, one should be able to reconstruct at least the corresponding bulk causal wedge. In attempt to quantify the ’amount of information’ contained in a given spatial region in field theory, we consider a particular bulk surface (specifically a co-dimension two surface in the bulk spacetime which is an extremal surface on the boundary of the bulk causal wedge), and propose that the area of this surface, measured in Planck units, naturally quantifies the information content. We therefore call this area the causal holographic information. We also contrast our ideas with earlier studies of holographic entanglement entropy. In particular, we establish that the causal holographic information, whilst not being a von Neumann entropy, curiously enough agrees with the entanglement entropy in all cases where one has a microscopic understanding of entanglement entropy.

MSC:

81T99 Quantum field theory; related classical field theories
81P45 Quantum information, communication, networks (quantum-theoretic aspects)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Ryu, S.; Takayanagi, T., Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett., 96, 181602, (2006) · Zbl 1228.83110
[2] Ryu, S.; Takayanagi, T., Aspects of holographic entanglement entropy, JHEP, 08, 045, (2006)
[3] A. Rényi, On Measures of Entropy and Information, in proceedings of 4\^{}{th}Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics, J. Neyman ed., University of California Press, Berkeley, California (1961) 547-561 [http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.bsmsp/1200512181
[4] Hubeny, VE; Rangamani, M.; Takayanagi, T., A covariant holographic entanglement entropy proposal, JHEP, 07, 062, (2007)
[5] Bousso, R., The holographic principle, Rev. Mod. Phys., 74, 825, (2002) · Zbl 1205.83025
[6] Fursaev, DV, Proof of the holographic formula for entanglement entropy, JHEP, 09, 018, (2006)
[7] Headrick, M., Entanglement renyi entropies in holographic theories, Phys. Rev., D 82, 126010, (2010)
[8] Casini, H.; Huerta, M.; Myers, RC, Towards a derivation of holographic entanglement entropy, JHEP, 05, 036, (2011) · Zbl 1296.81073
[9] Hung, L-Y; Myers, RC; Smolkin, M.; Yale, A., Holographic calculations of renyi entropy, JHEP, 12, 047, (2011) · Zbl 1306.81159
[10] M. Van Raamsdonk, Comments on quantum gravity and entanglement, arXiv:0907.2939 [INSPIRE]. · Zbl 1359.81171
[11] Raamsdonk, M., Building up spacetime with quantum entanglement, Gen. Rel. Grav., 42, 2323, (2010) · Zbl 1200.83052
[12] Raamsdonk, M., A patchwork description of dual spacetimes in AdS/CFT, Class. Quant. Grav., 28, 065002, (2011) · Zbl 1211.83017
[13] G. ’t Hooft, Dimensional reduction in quantum gravity, gr-qc/9310026 [INSPIRE].
[14] Susskind, L., The world as a hologram, J. Math. Phys., 36, 6377, (1995) · Zbl 0850.00013
[15] T. Banks, M.R. Douglas, G.T. Horowitz and E.J. Martinec, AdS dynamics from conformal field theory, hep-th/9808016 [INSPIRE].
[16] D. Harlow and D. Stanford, Operator Dictionaries and Wave Functions in AdS/CFT and dS/CFT, arXiv:1104.2621 [INSPIRE].
[17] Marolf, D., States and boundary terms: subtleties of Lorentzian AdS / CFT, JHEP, 05, 042, (2005)
[18] V.E. Hubeny, Extremal surfaces as bulk probes in AdS/CFT, arXiv:1203.1044 [INSPIRE].
[19] R. Bousso, S. Leichenauer and V. Rosenhaus, Light-sheets and AdS/CFT, arXiv:1203.6619 [INSPIRE].
[20] B. Czech, J.L. Karczmarek, F. Nogueira and M. Van Raamsdonk, The Gravity Dual of a Density Matrix, arXiv:1204.1330 [INSPIRE]. · Zbl 1248.83029
[21] R. Wald, General Relativity, University of Chicago Press, Chicago (1984). · Zbl 0549.53001
[22] Boer, J.; Kulaxizi, M.; Parnachev, A., Holographic entanglement entropy in Lovelock gravities, JHEP, 07, 109, (2011) · Zbl 1298.81265
[23] Hung, L-Y; Myers, RC; Smolkin, M., On holographic entanglement entropy and higher curvature gravity, JHEP, 04, 025, (2011)
[24] Headrick, M.; Takayanagi, T., A holographic proof of the strong subadditivity of entanglement entropy, Phys. Rev., D 76, 106013, (2007)
[25] Gao, S.; Wald, RM, Theorems on gravitational time delay and related issues, Class. Quant. Grav., 17, 4999, (2000) · Zbl 0972.83015
[26] Lieb, E.; Ruskai, M., Proof of the strong subadditivity of quantum-mechanical entropy, J. Math. Phys., 14, 1938, (1973)
[27] Calabrese, P.; Cardy, JL, Entanglement entropy and quantum field theory, J. Stat. Mech., 0406, p06002, (2004) · Zbl 1082.82002
[28] Myers, RC; Sinha, A., Holographic c-theorems in arbitrary dimensions, JHEP, 01, 125, (2011) · Zbl 1214.83036
[29] Klebanov, IR; Pufu, SS; Sachdev, S.; Safdi, BR, Renyi entropies for free field theories, JHEP, 04, 074, (2012) · Zbl 1348.81140
[30] Emparan, R., AdS/CFT duals of topological black holes and the entropy of zero energy states, JHEP, 06, 036, (1999) · Zbl 0951.83021
[31] Emparan, R., Black hole entropy as entanglement entropy: A holographic derivation, JHEP, 06, 012, (2006)
[32] Hubeny, VE; Marolf, D.; Rangamani, M., Hawking radiation in large-N strongly-coupled field theories, Class. Quant. Grav., 27, 095015, (2010) · Zbl 1191.83025
[33] Figueras, P.; Lucietti, J.; Wiseman, T., Ricci solitons, Ricci flow and strongly coupled CFT in the Schwarzschild Unruh or boulware vacua, Class. Quant. Grav., 28, 215018, (2011) · Zbl 1230.83015
[34] Louko, J.; Marolf, D.; Ross, SF, On geodesic propagators and black hole holography, Phys. Rev., D 62, 044041, (2000)
[35] H. Liu and M. Mezei, A Refinement of entanglement entropy and the number of degrees of freedom, arXiv:1202.2070 [INSPIRE]. · Zbl 1342.81346
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.