×

zbMATH — the first resource for mathematics

Flat connections in open string mirror symmetry. (English) Zbl 1397.81209
Summary: We study a flat connection defined on the open-closed deformation space of open string mirror symmetry for type II compactifications on Calabi-Yau threefolds with D-branes. We use flatness and integrability conditions to define distinguished flat coordinates and the superpotential function at an arbitrary point in the open-closed deformation space. Integrability conditions are given for concrete deformation spaces with several closed and open string deformations. We study explicit examples for expansions around different limit points, including orbifold Gromov-Witten invariants, and brane configurations with several brane moduli. In particular, the latter case covers stacks of parallel branes with non-abelian symmetry.

MSC:
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
14J33 Mirror symmetry (algebro-geometric aspects)
14N35 Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants (algebro-geometric aspects)
PDF BibTeX Cite
Full Text: DOI arXiv
References:
[1] C. Vafa, Extending mirror conjecture to Calabi-Yau with bundles, hep-th/9804131 [INSPIRE]. · Zbl 0986.14500
[2] Kachru, S.; Katz, SH; Lawrence, AE; McGreevy, J., Open string instantons and superpotentials, Phys. Rev., D 62, 026001, (2000)
[3] Kachru, S.; Katz, SH; Lawrence, AE; McGreevy, J., Mirror symmetry for open strings, Phys. Rev., D 62, 126005, (2000)
[4] M. Aganagic and C. Vafa, Mirror symmetry, D-branes and counting holomorphic discs, hep-th/0012041 [INSPIRE]. · Zbl 1094.32006
[5] Ooguri, H.; Vafa, C., Knot invariants and topological strings, Nucl. Phys., B 577, 419, (2000) · Zbl 1036.81515
[6] W. Lerche, P. Mayr and N. Warner, Holomorphic N = 1 special geometry of open-closed type-II strings, hep-th/0207259 [INSPIRE].
[7] W. Lerche, P. Mayr and N. Warner, \(N\) = 1 special geometry, mixed Hodge variations and toric geometry, hep-th/0208039 [INSPIRE].
[8] Walcher, J., Opening mirror symmetry on the quintic, Commun. Math. Phys., 276, 671, (2007) · Zbl 1135.14030
[9] D.R. Morrison and J. Walcher, D-branes and normal functions, arXiv:0709.4028 [INSPIRE]. · Zbl 1166.81036
[10] Jockers, H.; Soroush, M., Effective superpotentials for compact D5-brane Calabi-Yau geometries, Commun. Math. Phys., 290, 249, (2009) · Zbl 1204.32015
[11] Alim, M.; Hecht, M.; Mayr, P.; Mertens, A., Mirror symmetry for toric branes on compact hypersurfaces, JHEP, 09, 126, (2009)
[12] Alim, M.; etal., Hints for off-shell mirror symmetry in type-II/F-theory compactifications, Nucl. Phys., B 841, 303, (2010) · Zbl 1207.81093
[13] Jockers, H.; Soroush, M., Relative periods and open-string integer invariants for a compact Calabi-Yau hypersurface, Nucl. Phys., B 821, 535, (2009) · Zbl 1203.81139
[14] Grimm, TW; Ha, T-W; Klemm, A.; Klevers, D., Computing brane and flux superpotentials in F-theory compactifications, JHEP, 04, 015, (2010) · Zbl 1272.81153
[15] Aganagic, M.; Beem, C., The geometry of D-brane superpotentials, JHEP, 12, 060, (2011) · Zbl 1306.81176
[16] S. Li, B.H. Lian and S.-T. Yau, Picard-Fuchs equations for relative periods and Abel-Jacobi map for Calabi-Yau hypersurfaces, arXiv:0910.4215 [INSPIRE]. · Zbl 1253.14036
[17] Alim, M.; etal., Type II/F-theory superpotentials with several deformations and N = 1 mirror symmetry, JHEP, 06, 103, (2011) · Zbl 1298.81225
[18] Tomasiello, A., A-infinity structure and superpotentials, JHEP, 09, 030, (2001)
[19] Douglas, MR; Govindarajan, S.; Jayaraman, T.; Tomasiello, A., D branes on Calabi-Yau manifolds and superpotentials, Commun. Math. Phys., 248, 85, (2004) · Zbl 1061.81057
[20] Herbst, M.; Lazaroiu, C-I; Lerche, W., Superpotentials, A(∞) relations and WDVV equations for open topological strings, JHEP, 02, 071, (2005)
[21] Ashok, SK; Dell’Aquila, E.; Diaconescu, D-E; Florea, B., Obstructed D-branes in Landau-Ginzburg orbifolds, Adv. Theor. Math. Phys., 8, 427, (2004) · Zbl 1082.81068
[22] Hori, K.; Walcher, J., F-term equations near Gepner points, JHEP, 01, 008, (2005)
[23] Aspinwall, PS; Katz, SH, Computation of superpotentials for D-branes, Commun. Math. Phys., 264, 227, (2006) · Zbl 1109.81062
[24] Baumgartl, M.; Brunner, I.; Gaberdiel, MR, D-brane superpotentials and RG flows on the quintic, JHEP, 07, 061, (2007)
[25] Walcher, J., Extended holomorphic anomaly and loop amplitudes in open topological string, Nucl. Phys., B 817, 167, (2009) · Zbl 1194.81219
[26] Walcher, J., Evidence for tadpole cancellation in the topological string, Commun. Num. Theor. Phys., 3, 111, (2009) · Zbl 1168.81023
[27] Krefl, D.; Walcher, J., Real mirror symmetry for one-parameter hypersurfaces, JHEP, 09, 031, (2008) · Zbl 1245.14041
[28] Knapp, J.; Scheidegger, E., Towards open string mirror symmetry for one-parameter Calabi-Yau hypersurfaces, Adv. Theor. Math. Phys., 13, 991, (2009) · Zbl 1208.81166
[29] Grimm, TW; Ha, T-W; Klemm, A.; Klevers, D., The D5-brane effective action and superpotential in N = 1 compactifications, Nucl. Phys., B 816, 139, (2009) · Zbl 1194.81204
[30] Knapp, J.; Scheidegger, E., Matrix factorizations, Massey products and F-terms for two-parameter Calabi-Yau hypersurfaces, Adv. Theor. Math. Phys., 14, 225, (2010) · Zbl 1206.81104
[31] Walcher, J., Calculations for mirror symmetry with D-branes, JHEP, 09, 129, (2009)
[32] Grimm, TW; Ha, T-W; Klemm, A.; Klevers, D., Five-brane superpotentials and heterotic/F-theory duality, Nucl. Phys., B 838, 458, (2010) · Zbl 1206.81099
[33] Jockers, H.; Mayr, P.; Walcher, J., On N = 1 4D effective couplings for F-theory and heterotic vacua, Adv. Theor. Math. Phys., 14, 1433, (2010) · Zbl 1251.81076
[34] Baumgartl, M.; Brunner, I.; Soroush, M., D-brane superpotentials: geometric and worldsheet approaches, Nucl. Phys., B 843, 602, (2011) · Zbl 1207.81101
[35] Fuji, H.; Nakayama, S.; Shimizu, M.; Suzuki, H., A note on computations of D-brane superpotential, J. Phys., A 44, 465401, (2011) · Zbl 1270.81166
[36] Shimizu, M.; Suzuki, H., Open mirror symmetry for Pfaffian Calabi-Yau 3-folds, JHEP, 03, 083, (2011) · Zbl 1301.81242
[37] Grimm, TW; Klemm, A.; Klevers, D., Five-brane superpotentials, blow-up geometries and SU(3) structure manifolds, JHEP, 05, 113, (2011) · Zbl 1296.81098
[38] Hebecker, A.; Kraus, SC; Lüst, D.; Steinfurt, S.; Weigand, T., Fluxbrane inflation, Nucl. Phys., B 854, 509, (2012) · Zbl 1229.83080
[39] N. Carqueville and M.M. Kay, Bulk deformations of open topological string theory, arXiv:1104.5438 [INSPIRE]. · Zbl 1256.81087
[40] A. Mertens, Reflections of N S5 branes, arXiv:1107.1457 [INSPIRE].
[41] Katz, SH; Liu, C-CM, Enumerative geometry of stable maps with Lagrangian boundary conditions and multiple covers of the disc, Adv. Theor. Math. Phys., 5, 1, (2002)
[42] T. Graber and E. Zaslow, Open string Gromov-Witten invariants: calculations and a mirrortheorem’, hep-th/0109075 [INSPIRE]. · Zbl 1085.14518
[43] Pandharipande, R.; Solomon, J.; Walcher, J., Disk enumeration on the quintic 3-fold, J. Amer. Math. Soc., 21, 1169, (2008) · Zbl 1203.53086
[44] Mayr, P., N = 1 mirror symmetry and open/closed string duality, Adv. Theor. Math. Phys., 5, 213, (2002) · Zbl 1022.81046
[45] Lerche, W.; Smit, D.; Warner, N., Differential equations for periods and flat coordinates in two-dimensional topological matter theories, Nucl. Phys., B 372, 87, (1992)
[46] S. Hosono and B. Lian, GKZ hypergeometric systems and applications to mirror symmetry, hep-th/9602147 [INSPIRE].
[47] Hosono, S.; Lian, B.; Yau, S-T, GKZ generalized hypergeometric systems in mirror symmetry of Calabi-Yau hypersurfaces, Commun. Math. Phys., 182, 535, (1996) · Zbl 0870.14028
[48] Bershadsky, M.; Cecotti, S.; Ooguri, H.; Vafa, C., Kodaira-spencer theory of gravity and exact results for quantum string amplitudes, Commun. Math. Phys., 165, 311, (1994) · Zbl 0815.53082
[49] Aganagic, M.; Klemm, A.; Vafa, C., Disk instantons, mirror symmetry and the duality web, Z. Naturforsch., A 57, 1, (2002) · Zbl 1203.81153
[50] W. Lerche and P. Mayr, On N = 1 mirror symmetry for open type II strings, hep-th/0111113 [INSPIRE].
[51] W. Lerche, Special geometry and mirror symmetry for open string backgrounds with N = 1 supersymmetry, hep-th/0312326 [INSPIRE].
[52] Bouchard, V.; Cavalieri, R., On the mathematics and physics of high genus invariants of C\^{}{3}/Z_{3}, Adv. Theor. Math. Phys., 13, 695, (2009) · Zbl 1198.81152
[53] A. Brini and R. Cavalieri, Open orbifold Gromov-Witten invariants of C\^{}{3}/Z_{n}: Localization and mirror symmetry, arXiv:1007.0934 [INSPIRE]. · Zbl 1236.14046
[54] Aganagic, M.; Bouchard, V.; Klemm, A., Topological strings and (almost) modular forms, Commun. Math. Phys., 277, 771, (2008) · Zbl 1165.81037
[55] Bouchard, V.; Klemm, A.; Mariño, M.; Pasquetti, S., Remodeling the B-model, Commun. Math. Phys., 287, 117, (2009) · Zbl 1178.81214
[56] Bouchard, V.; Klemm, A.; Mariño, M.; Pasquetti, S., Topological open strings on orbifolds, Commun. Math. Phys., 296, 589, (2010) · Zbl 1203.14042
[57] Brini, A.; Tanzini, A., Exact results for topological strings on resolved Y**p, q singularities, Commun. Math. Phys., 289, 205, (2009) · Zbl 1195.14057
[58] Alim, M.; Lange, JD; Mayr, P., Global properties of topological string amplitudes and orbifold invariants, JHEP, 03, 113, (2010) · Zbl 1271.81117
[59] Brini, A., Open topological strings and integrable hierarchies: remodeling the A-model, Commun. Math. Phys., 312, 735, (2012) · Zbl 1276.14055
[60] Diaconescu, D-E; Gomis, J., Fractional branes and boundary states in orbifold theories, JHEP, 10, 001, (2000) · Zbl 0965.81055
[61] Candelas, P.; Ossa, XC; Green, PS; Parkes, L., A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nucl. Phys., B 359, 21, (1991) · Zbl 1098.32506
[62] Klemm, A.; Theisen, S., Considerations of one modulus Calabi-Yau compactifications: Picard-Fuchs equations, Kähler potentials and mirror maps, Nucl. Phys., B 389, 153, (1993)
[63] Myers, RC, Dielectric branes, JHEP, 12, 022, (1999) · Zbl 0958.81091
[64] Lüst, D.; Mayr, P.; Reffert, S.; Stieberger, S., F-theory flux, destabilization of orientifolds and soft terms on D7-branes, Nucl. Phys., B 732, 243, (2006) · Zbl 1192.81278
[65] Jockers, H.; Louis, J., D-terms and F-terms from D7-brane fluxes, Nucl. Phys., B 718, 203, (2005) · Zbl 1207.81126
[66] Gomis, J.; Marchesano, F.; Mateos, D., An open string landscape, JHEP, 11, 021, (2005)
[67] Martucci, L., D-branes on general N = 1 backgrounds: superpotentials and D-terms, JHEP, 06, 033, (2006)
[68] Witten, E., Chern-Simons gauge theory as a string theory, Prog. Math., 133, 637, (1995) · Zbl 0844.58018
[69] K. Hori and C. Vafa, Mirror symmetry, hep-th/0002222 [INSPIRE].
[70] Katz, SH; Morrison, DR; Plesser, MR, Enhanced gauge symmetry in type-II string theory, Nucl. Phys., B 477, 105, (1996) · Zbl 0925.81188
[71] Klemm, A.; Mayr, P., Strong coupling singularities and nonabelian gauge symmetries in N =2 string theory, Nucl. Phys., B 469, 37, (1996) · Zbl 1002.81536
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.