zbMATH — the first resource for mathematics

Noncommutative spaces and Poincaré symmetry. (English) Zbl 1397.81106
Summary: We present a framework which unifies a large class of noncommutative spacetimes that can be described in terms of a deformed Heisenberg algebra. The commutation relations between spacetime coordinates are up to linear order in the coordinates, with structure constants depending on the momenta plus terms depending only on the momenta. The possible implementations of the action of Lorentz transformations on these deformed phase spaces are considered, together with the consistency requirements they introduce. It is found that Lorentz transformations in general act nontrivially on tensor products of momenta. In particular, the Lorentz group element which acts on the left and on the right of a composition of two momenta is different and depends on the momenta involved in the process. We conclude with two representative examples which illustrate the mentioned effect.

81R60 Noncommutative geometry in quantum theory
81T75 Noncommutative geometry methods in quantum field theory
81S05 Commutation relations and statistics as related to quantum mechanics (general)
81R50 Quantum groups and related algebraic methods applied to problems in quantum theory
Full Text: DOI
[1] Feynman, R. P.; Morinigo, F. B.; Wagner, W. G., Feynman lectures on gravitation, (2003)
[2] Matschull, H.-J.; Welling, M., Quantum mechanics of a point particle in (\(2 + 1\))-dimensional gravity, Class. Quantum Gravity, 15, 2981-3030, (1998) · Zbl 1063.83534
[3] Freidel, L.; Livine, E. R., Effective 3-D quantum gravity and non-commutative quantum field theory, Phys. Rev. Lett., 96, (2006) · Zbl 1211.83015
[4] Majid, S., Algebraic approach to quantum gravity, II: noncommutative spacetime, (Approaches to Quantum Gravity, (2009)), 466
[5] Lukierski, J.; Nowicki, A.; Ruegg, H., New quantum Poincaré algebra and κ-deformed field theory, Phys. Lett. B, 293, 3, 344-352, (1992) · Zbl 0834.17022
[6] Groenewold, H. J., On the principles of elementary quantum mechanics, Physica, 12, 7, 405-460, (1946) · Zbl 0060.45002
[7] Moyal, J. E., Quantum mechanics as a statistical theory, (Mathematical Proceedings of the Cambridge Philosophical Society, vol. 45, (1949), Cambridge Univ. Press), 99-124 · Zbl 0031.33601
[8] Snyder, H. S., Quantized space-time, Phys. Rev., 71, 1, 38, (1947) · Zbl 0035.13101
[9] Juric, T.; Meljanac, S.; Pikutic, D., Realizations of κ-Minkowski space, Drinfeld twists and related symmetry algebras, Eur. Phys. J. C, 75, 11, 528, (2015)
[10] Kovačević, D.; Meljanac, S.; Samsarov, A.; Škoda, Z., Hermitian realizations of κ-Minkowski space-time, Int. J. Mod. Phys. A, 30, 03, 1550019, (2015) · Zbl 1310.81099
[11] Meljanac, S.; Škoda, Z.; Svrtan, D., Exponential formulas and Lie algebra type star products, SIGMA, 8, (2012) · Zbl 1248.81092
[12] Kovačević, D.; Meljanac, S., Kappa-Minkowski spacetime, kappa-Poincaré Hopf algebra and realizations, J. Phys. A, 45, 135208, (2012) · Zbl 1241.83010
[13] Govindarajan, T. R.; Gupta, K. S.; Harikumar, E.; Meljanac, S.; Meljanac, D., Twisted statistics in kappa-Minkowski spacetime, Phys. Rev. D, 77, (2008)
[14] Juric, T.; Meljanac, S.; Strajn, R., Twists, realizations and Hopf algebroid structure of kappa-deformed phase space, Int. J. Mod. Phys. A, 29, (2014) · Zbl 1284.81175
[15] Jurić, T.; Kovačević, D.; Meljanac, S., κ-deformed phase space, Hopf algebroid and twisting, SIGMA, 10, 106, (2014) · Zbl 1310.81098
[16] Lu, J.-H., Hopf algebroids and quantum groupoids · Zbl 0884.17010
[17] Juric, T.; Meljanac, S.; Strajn, R., κ-poincare-Hopf algebra and Hopf algebroid structure of phase space from twist, Phys. Lett. A, 377, 2472-2476, (2013) · Zbl 1311.81155
[18] Lukierski, J.; Skoda, Z.; Woronowicz, M., Deformed covariant quantum phase spaces as Hopf algebroids, Phys. Lett. B, 750, 401-406, (2015) · Zbl 1364.81170
[19] Amelino-Camelia, G., Fate of Lorentz symmetry in relative-locality momentum spaces, Phys. Rev. C, 85, 8, (2012)
[20] Carmona, J.; Cortes, J.; Mercati, F., Relativistic kinematics beyond special relativity, Phys. Rev. C, 86, 8, (2012)
[21] Carmona, J. M.; Cortes, J. L.; Relancio, J. J., Beyond special relativity at second order, Phys. Rev. D, 94, 8, (2016)
[22] Gomes, M.; Kupriyanov, V. G.; da Silva, A. J., Noncommutativity due to spin, Phys. Rev. D, 81, (2010) · Zbl 1193.81056
[23] Ferrari, A. F.; Gomes, M.; Kupriyanov, V. G.; Stechhahn, C. A., Dynamics of a Dirac fermion in the presence of spin noncommutativity, Phys. Lett. B, 718, 1475-1480, (2013) · Zbl 1372.81097
[24] Vasyuta, V. M.; Tkachuk, V. M., Classical electrodynamics in a space with spin noncommutativity of coordinates, Phys. Lett. B, 761, 462-468, (2016) · Zbl 1371.78028
[25] Kovacevic, D.; Meljanac, S.; Pachol, A.; Strajn, R., Generalized poincare algebras, Hopf algebras and kappa-Minkowski spacetime, Phys. Lett. B, 711, 122-127, (2012)
[26] Lukierski, J.; Ruegg, H.; Nowicki, A.; Tolstoy, V. N., Q-deformation of Poincaré algebra, Phys. Lett. B, 264, 3-4, 331-338, (1991)
[27] Majid, S.; Ruegg, H., Bicrossproduct structure of κ-poincare group and non-commutative geometry, Phys. Lett. B, 334, 348-354, (1994) · Zbl 1112.81328
[28] Gubitosi, G.; Mercati, F., Relative locality in κ-Poincaré, Class. Quantum Gravity, 30, 14, 145002, (2013) · Zbl 1273.83066
[29] Loret, N., Exploring special relative locality with de Sitter momentum-space, Phys. Rev. D, 90, 12, (2014)
[30] Battisti, M. V.; Meljanac, S., Scalar field theory on non-commutative snyder space-time, Phys. Rev. D, 82, (2010)
[31] Meljanac, S.; Meljanac, D.; Mignemi, S.; Strajn, R., Snyder-type spaces, twisted Poincaré algebra and addition of momenta · Zbl 1376.81044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.