×

zbMATH — the first resource for mathematics

On the general solution of the problem of the motion of a heavy rigid body in the Hess case. (English. Russian original) Zbl 1397.70006
Sb. Math. 206, No. 5, 621-649 (2015); translation from Mat. Sb. 206, No. 5, 5-34 (2015).
In this paper, the motion of a heavy rigid body in the Hess case is considered. The solutions of the Euler-Poisson equations as analytic functions of time with given asymptotic behaviour in neighbourhoods of given singular points are presented. A representation of solutions of the Hess problem by means of the Riccati equation is used, which enables us to obtain a precise estimate for the boundary of the limiting periodic solutions.

MSC:
70E15 Free motion of a rigid body
70E20 Perturbation methods for rigid body dynamics
70E40 Integrable cases of motion in rigid body dynamics
70E50 Stability problems in rigid body dynamics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] W. Hess 1890 Ueber die Euler’schen Bewegungsgleichungen und über eine neue partikula\ddotre Lösung des Problems der Bewegung eines starren Körpers um einen festen Punkt Math. Ann.37 2 153–181 · JFM 22.0920.01 · doi:10.1007/BF01200234
[2] N. E. Joukowski 1893 Hess loxodromic pendulum Trudy Otdel. Fiz. Nauk Obshch. Lubit. Estestvozn.5 2 37–45
[3] B. K. Mlodzieiowski and P. A. Nekrasov 1893 Conditions for the existence of asymptotic periodic motions in the Hess problem Trudy Otdel. Fiz. Nauk Obshch. Lubit. Estestvozn.6 1 43–52
[4] P. A. Nekrasov 1896 An analytic investigation of one case of the motion of a heavy rigid body about a fixed point Mat. Sb.18 2 161–274
[5] H. Appelroth 1892 On § 1 of S. Kovalewski’s memoir ”Sur le proble\graveme de la rotation d’un corps solide autour d’un point fixe” Mat. Sb.16 3 483–507
[6] S. V. Kovalevskaya (Kovalewski) 1948 Research works Publishing House of the USSR Acedemy of Sciences Moscow 368 pp.
[7] P. A. Nekrasov 1892 On the problem of motion of a heavy rigid body about a fixed point Mat. Sb.16 3 508–517
[8] S. Novikov, S. V. Manakov, L. P. Pitaevskii and V. E. Zakharov 1980 Theory of solitons. The inverse scattering method Nauka, Moscow 320 pp.
[9] English transl. S. Novikov, S. V. Manakov, L. P. Pitaevskii and V. E. Zakharov 1984 Contemp. Soviet Math. Consultants Bureau [Plenum], New York xi+276 pp.
[10] S. V. Manakov 1976 Note on the integration of Euler’s equations of the dynamics of an n-dimensional rigid body Funktsional. Anal. i Prilozhen.10 4 93–94
[11] English transl. in S. V. Manakov 1976 Funct. Anal. Appl.10 4 328–329 · Zbl 0358.70004 · doi:10.1007/BF01076037
[12] A. S. Mishchenko and A. T. Fomenko 1978 Euler equations on finite-dimensional Lie groups Izv. Akad. Nauk SSSR Ser. Mat.42 2 396–415 · Zbl 0383.58006
[13] English transl. in A. S. Mishchenko and A. T. Fomenko 1978 Math. USSR-Izv.12 2 371–389
[14] M. Adler and P. van Moerbeke 1980 Completely integrable systems, Euclidean Lie algebras, and curves Adv. in Math.38 3 267–317 · Zbl 0455.58017 · doi:10.1016/0001-8708(80)90007-9
[15] M. Adler and P. van Moerbeke 1980 Linearization of Hamiltonian system, Jacobi varieties, and representation theory Adv. in Math.38 3 318–379 · Zbl 0455.58010 · doi:10.1016/0001-8708(80)90008-0
[16] V. Dragovic\acute and B. Gagic\acute 2001 An L-A pair for the Hess-Apel’rot system and a new integrable case for the Euler-Poisson equations on so(4)\(\times\) so(4)Proc. Roy. Soc. Edinburgh Sect. A131 4 845–855 · Zbl 1010.70004 · doi:10.1017/S0308210500001141
[17] P. Lubowiecki and H. Z\dotoła̧dek 2012 The Hess-Appelrot system. I. Invariant torus and its normal hyperbolicity J. Geom. Mech.4 4 443–467 · Zbl 1264.05074
[18] P. Lubowiecki and H. Z\dotoła̧dek 2012 The Hess-Appelrot system. II. Perturbation and limit cycles J. Differential Equations252 2 1701–1722 · Zbl 1238.05151 · doi:10.1016/j.jde.2011.06.012
[19] V. I. Arnold 1989 Mathematical methods of classical mechanics Nauka, Moscow 3d ed.472 pp. · doi:10.1007/978-1-4757-2063-1
[20] English transl. of 1st ed. V. I. Arnold 1978 Grad. Texts in Math. 60 Springer-Verlag, New York xvi+462 pp.
[21] A. V. Belyaev 2005 Analytic properties of solutions of the Euler-Poisson equations in the Hess case Ukr. Mat. Visn.2 33 297–317 · Zbl 1211.70005
[22] English transl. in A. V. Belyaev 2005 Ukr. Math. Bull.2 3 301–321
[23] A. Hurwitz 1964 Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen, Herausgegeben und erga\ddotnzt durch einen Abschnitt über geometrische Funktionentheorie von R. Courant. Mit einem Anhang von H. Röhrl Grundlehren Math. Wiss. 3 Springer-Verlag, Berlin–New York 4. Aufl. xiii+706 pp.
[24] B. M. Levitan and V. V. Zhikov 1978 Almost periodic functions and differential equations Moscow University Publishing House, Moscow 204 pp.
[25] English transl. B. M. Levitan and V. V. Zhikov 1982 Almost periodic functions and differential equations Cambridge Univ. Press, Cambridge–New York xi+211 pp.
[26] A. V. Belyaev 2011 Asymptotic behaviour of singular points of solutions of the problem of heavy n-dimensional body motion in the Lagrange case Mat. Sb.202 11 55–74 · doi:10.4213/sm7733
[27] English transl. in A. V. Belyaev 2011 Sb. Math.202 11 1617–1635
[28] A. V. Belyaev 2012 On the full list of finite-valued solutions of the Euler-Poisson equations having four first integrals Math. Nachr.285 10 1199–1229 · Zbl 1281.70013 · doi:10.1002/mana.201100136
[29] A. I. Dokshevich 1992 Closed-form solutions of the Euler-Poisson equations. Naukova Dumka, Kiev 168 pp.
[30] A. M. Lyapunov 1893 On a property of differential equations for a problem of motion of a heavy rigid body having a fixed point Soobshch. Kharkov Mat. Obshch. 2 Ser.4 123–140
[31] Yu. A. Arkhangel’skii 1977 Analytic dynamics of rigid bodies Nauka, Moscow 328 pp.
[32] I. Tamura 1976 Yo‾so‾ no toporoji‾ Sugaku Sensho Iwanami Shoten, Tokyo 238 pp.
[33] English transl. I. Tamura 1992 Topology of foliations: an introduction Translations of Mathematical Monographs 97 American Math. Soc., Providence, RI xii+193 pp.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.