×

Covariance pattern mixture models for the analysis of multivariate heterogeneous longitudinal data. (English) Zbl 1397.62214

Summary: We propose a novel approach for modeling multivariate longitudinal data in the presence of unobserved heterogeneity for the analysis of the Health and Retirement Study (HRS) data. Our proposal can be cast within the framework of linear mixed models with discrete individual random intercepts; however, differently from the standard formulation, the proposed Covariance Pattern Mixture Model (CPMM) does not require the usual local independence assumption. The model is thus able to simultaneously model the heterogeneity, the association among the responses and the temporal dependence structure.{ }We focus on the investigation of temporal patterns related to the cognitive functioning in retired American respondents. In particular, we aim to understand whether it can be affected by some individual socio-economical characteristics and whether it is possible to identify some homogenous groups of respondents that share a similar cognitive profile. An accurate description of the detected groups allows government policy interventions to be opportunely addressed.{ }Results identify three homogenous clusters of individuals with specific cognitive functioning, consistent with the class conditional distribution of the covariates. The flexibility of CPMM allows for a different contribution of each regressor on the responses according to group membership. In so doing, the identified groups receive a global and accurate phenomenological characterization.

MSC:

62H30 Classification and discrimination; cluster analysis (statistical aspects)
62H12 Estimation in multivariate analysis
62P10 Applications of statistics to biology and medical sciences; meta analysis

Software:

flexmix
PDFBibTeX XMLCite
Full Text: DOI arXiv Euclid

References:

[1] Anderlucci, L. and Viroli, C. (2015). Supplement to “Covariance pattern mixture models for the analysis of multivariate heterogeneous longitudinal data.” . · Zbl 1397.62214 · doi:10.1214/15-AOAS816
[2] Bandyopadhyay, S., Ganguli, B. and Chatterjee, A. (2011). A review of multivariate longitudinal data analysis. Stat. Methods Med. Res. 20 299-330. · Zbl 1270.62011 · doi:10.1177/0962280209340191
[3] Banfield, J. D. and Raftery, A. E. (1993). Model-based Gaussian and non-Gaussian clustering. Biometrics 49 803-821. · Zbl 0794.62034 · doi:10.2307/2532201
[4] Bartolucci, F., Bacci, S. and Pennoni, F. (2014). Longitudinal analysis of self-reported health status by mixture latent auto-regressive models. J. R. Stat. Soc. Ser. C. Appl. Stat. 63 267-288. · doi:10.1111/rssc.12030
[5] Bartolucci, F., Farcomeni, A. and Pennoni, F. (2012). Latent Markov Models for Longitudinal Data . Chapman & Hall/CRC, London. · Zbl 1341.62002
[6] Brown, E. R. and Ibrahim, J. G. (2003). A Bayesian semiparametric joint hierarchical model for longitudinal and survival data. Biometrics 59 221-228. · Zbl 1210.62022 · doi:10.1111/1541-0420.00028
[7] Celeux, G. and Govaert, G. (1995). Gaussian parsimonious clustering models. Pattern Recogn. 28 781-793.
[8] Chi, E. M. and Reinsel, G. C. (1989). Models for longitudinal data with random effects and \(\mathrm{AR}(1)\) errors. J. Amer. Statist. Assoc. 84 452-459. · doi:10.1080/01621459.1989.10478790
[9] Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Statist. Soc. Ser. B 39 1-38. · Zbl 0364.62022
[10] De la Cruz-Mesía, R., Quintana, F. A. and Marshall, G. (2008). Model-based clustering for longitudinal data. Comput. Statist. Data Anal. 52 1441-1457. · Zbl 1452.62454
[11] Dutilleul, P. (1999). The MLE algorithm for the matrix normal distribution. J. Stat. Comput. Simul. 64 105-123. · Zbl 0960.62056 · doi:10.1080/00949659908811970
[12] Erosheva, E. A., Matsueda, R. L. and Telesca, D. (2014). Breaking bad: Two decades of life-course data analysis in criminology, developmental phsycology, and beyond. Annual Review of Statistics and Its Application 1 301-332.
[13] Ferrer, E. and McArdle, J. J. (2003). Alternative structural models for multivariate longitudinal data analysis. Struct. Equ. Model. 10 493-524. · doi:10.1207/S15328007SEM1004_1
[14] Fitzmaurice, G., Davidian, M., Verbeke, G. and Molenberghs, G., eds. (2009). Longitudinal Data Analysis . CRC Press, Boca Raton, FL. · Zbl 1144.62087 · doi:10.1201/9781420011579
[15] Fraley, C. and Raftery, A. E. (2002). Model-based clustering, discriminant analysis, and density estimation. J. Amer. Statist. Assoc. 97 611-631. · Zbl 1073.62545 · doi:10.1198/016214502760047131
[16] Goldstein, H. (1995). Multilevel Statistical Models . Wiley, New York. · Zbl 1014.62126
[17] Grün, B. and Leisch, F. (2007). Fitting finite mixtures of generalized linear regressions in \(\mathsf{R}\). Comput. Statist. Data Anal. 51 5247-5252. · Zbl 1445.62192
[18] Heeringa, S. G., Fisher, G. G., Hurd, M. D., Langa, K. M., Ofstedal, M. B., Plassman, B. L., Rodgers, W. and Weir, D. R. (2007). Aging, demographics and memory study (ADAMS). Sample design, weights, and analysis for ADAMS. Available at .
[19] Juster, F. T. and Suzman, R. (1995). An overview of the health and retirement study. J. Hum. Resour. 30 135-145.
[20] Kleinman, K. and Ibrahim, J. (1998). A semi-parametric Bayesian approach to the random effects model. Biometrics 54 921-938. · Zbl 1058.62513 · doi:10.2307/2533846
[21] Laird, N. M. and Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics 38 963-974. · Zbl 0512.62107 · doi:10.2307/2529876
[22] Langa, K. M., Plassman, B. L., Wallace, R. B., Herzog, A. R., Heeringa, S. G., Ofstedal, M. B., Burke, J. R., Fisher, G. G., Fultz, N. H., Hurd, M. D., Potter, G. G., Rodgers, W. L., Steffens, D. C., Weir, D. R. and Willis, R. J. (2005). The aging, demographics, and memory study: Study design and methods. Neuroepidemiology 25 181-191.
[23] Lazarsfeld, P. F. and Henry, N. W. (1968). Latent Structure Analysis . Houghton Mifflin, Boston. · Zbl 0182.52201
[24] Leiby, B. E., Sammel, M. D., Ten Have, T. R. and Lynch, K. G. (2009). Identification of multivariate responders and non-responders by using Bayesian growth curve latent class models. J. R. Stat. Soc. Ser. C. Appl. Stat. 58 505-524. · doi:10.1111/j.1467-9876.2009.00663.x
[25] Manrique-Vallier, D. (2014). Longitudinal mixed membership trajectory models for disability survey data. Ann. Appl. Stat. 8 2268-2291. · Zbl 1454.62502 · doi:10.1214/14-AOAS769
[26] McArdle, J. J., Fisher, G. G. and Kadlec, K. M. (2007). Latent variable analysis of age trends in tests of cognitive ability in the health and retirement survey, 1992-2004. Psychol. Aging 22 525-545.
[27] McCulloch, C. (2008). Joint modelling of mixed outcome types using latent variables. Stat. Methods Med. Res. 17 53-73. · Zbl 1154.62339 · doi:10.1177/0962280207081240
[28] McLachlan, G. and Peel, D. (2000). Finite Mixture Models . Wiley-Interscience, New York. · Zbl 0963.62061
[29] McNicholas, P. D. and Murphy, T. B. (2010). Model-based clustering of longitudinal data. Canad. J. Statist. 38 153-168. · Zbl 1190.62120 · doi:10.1002/cjs.10047
[30] Müller, P. and Rosner, G. (1997). A Bayesian population model with hierarchical mixture priors applied to blood count data. J. Amer. Statist. Assoc. 92 1279-1292. · Zbl 0913.62112 · doi:10.2307/2965398
[31] Müller, P., Rosner, G. L., De Iorio, M. and MacEachern, S. (2005). A nonparametric Bayesian model for inference in related longitudinal studies. J. Roy. Statist. Soc. Ser. C 54 611-626. · Zbl 1490.62121 · doi:10.1111/j.1467-9876.2005.05475.x
[32] Muthén, B. O. (2002). Beyond SEM: General latent variable modeling. Behaviormetrika 29 81-117. · Zbl 1017.62125 · doi:10.2333/bhmk.29.81
[33] Muthén, B. and Asparouhov, T. (2009). Growth mixture modeling: Analysis with non-Gaussian random effects. In Longitudinal Data Analysis 143-165. CRC Press, Boca Raton, FL.
[34] Naik, D. N. and Rao, S. S. (2001). Analysis of multivariate repeated measures data with a Kronecker product structured covariance matrix. J. Appl. Stat. 28 91-105. · Zbl 0991.62038 · doi:10.1080/02664760120011626
[35] Newton, H. J. (1988). TIMESLAB : A Time Series Analysis Laboratory . Wadsworth & Brooks/Cole, Pacific Grove, CA. · Zbl 0638.62086
[36] Plassman, B. L., Langa, K. M., Fisher, G. G., Heeringa, S. G., Weir, D. R., Ofstedal, M. B., Burke, J. R., Hurd, M. D., Potter, G. G., Rodgers, W. L., Steffens, D. C., McArdle, J. J., Willis, R. J. and Wallace, R. B. (2008). Prevalence of cognitive impairment without dementia in the United States. Ann. Intern. Med. 148 427-434.
[37] Pourahmadi, M. (1999). Joint mean-covariance models with applications to longitudinal data: Unconstrained parameterisation. Biometrika 86 677-690. · Zbl 0949.62066 · doi:10.1093/biomet/86.3.677
[38] Proust-Lima, C., Amieva, H. and Jacqmin-Gadda, H. (2013). Analysis of multivariate mixed longitudinal data: A flexible latent process approach. Br. J. Math. Stat. Psychol. 66 470-486.
[39] Proust-Lima, C. and Jacqmin-Gadda, H. (2005). Estimation of linear mixed models with a mixture of distribution for the random-effects. Comput. Methods Programs Biomed. 78 165-173.
[40] Quandt, R. E. and Ramsey, J. B. (1978). Estimating mixtures of normal distributions and switching regressions. J. Amer. Statist. Assoc. 73 730-752. · Zbl 0401.62024 · doi:10.2307/2286266
[41] Reinsel, G. (1984). Estimation and prediction in a multivariate random effects generalized linear model. J. Amer. Statist. Assoc. 79 406-414. · Zbl 0556.62030 · doi:10.2307/2288283
[42] Skrondal, A. and Rabe-Hesketh, S. (2004). Generalized Latent Variable Modeling : Multilevel , Longitudinal , and Structural Equation Models . Chapman & Hall/CRC, Boca Raton, FL. · Zbl 1097.62001
[43] Steffens, D. C., Fisher, G. G., Langa, K. M., Potter, G. G. and Plassman, L. G. (2009). Prevalence of depression among older americans: The aging, demographics and memory study. Int. Psychogeriatr. 21 879-888.
[44] Timmerman, M. E. and Kiers, H. A. L. (2003). Four simultaneous component models for the analysis of multivariate time series from more than one subject to model intraindividual and interindividual differences. Psychometrika 68 105-121. · Zbl 1306.62507 · doi:10.1007/BF02296656
[45] Vasdekis, V. G. S., Cagnone, S. and Moustaki, I. (2012). A composite likelihood inference in latent variable models for ordinal longitudinal responses. Psychometrika 77 425-441. · Zbl 1272.62136 · doi:10.1007/s11336-012-9264-6
[46] Verbeke, G. and Lesaffre, E. (1996). A linear mixed-effects model with heterogeneity in the random effects population. J. Amer. Statist. Assoc. 91 217-221. · Zbl 0870.62057 · doi:10.2307/2291398
[47] Verbeke, G., Fieuws, S., Molenberghs, G. and Davidian, M. (2014). The analysis of multivariate longitudinal data: A review. Stat. Methods Med. Res. 23 42-59. · doi:10.1177/0962280212445834
[48] Vermunt, J. K. and Magidson, J. (2003). Latent class models for classification. Comput. Statist. Data Anal. 41 531-537. · Zbl 1429.62268
[49] Viroli, C. (2011). Finite mixtures of matrix normal distributions for classifying three-way data. Stat. Comput. 21 511-522. · Zbl 1221.62083 · doi:10.1007/s11222-010-9188-x
[50] Viroli, C. (2012). On matrix-variate regression analysis. J. Multivariate Anal. 111 296-309. · Zbl 1259.62060 · doi:10.1016/j.jmva.2012.04.005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.