Stability results, almost global generalized Beltrami fields and applications to vortex structures in the Euler equations. (English) Zbl 1397.35192

This very comprehensive work deals with so-called Beltrami fields , that is, vector fields in three dimensions whose curl is the product of the field itself by a constant factor. In particular they are the kind of stationary solutions of the Euler equations where one has been able to show the existence of vortex structures of arbitrarily complicated topology.
The main objective of the present paper is to study the existence, regularity and stability results of generalized Beltrami fields . These vector fields play a fundamental role in the understanding of turbulence.
A further aim of the paper consists in showing that, although generalized Beltrami fields are indeed rare , one is still able to prove some kind of partial stability result. This article contains a lot of preliminary material with many given proofs. The bibliography contains 45 items.


35Q31 Euler equations
76B03 Existence, uniqueness, and regularity theory for incompressible inviscid fluids
76M15 Boundary element methods applied to problems in fluid mechanics
35J46 First-order elliptic systems
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
35B35 Stability in context of PDEs
76F25 Turbulent transport, mixing
Full Text: DOI arXiv


[1] Amari, T.; Boulmezaoud, T.Z.; Mikić, Z., An iterative method for the reconstruction of the solar coronal magnetic field. I. method for regular solutions, Astron Astrophys., 350, 1051-1059, (1999)
[2] Arnold, V.I., Sur la topologie des écoulements stationnaires des fluides parfaits, C. R. Acad. Sci. Paris., 261, 17-20, (1965) · Zbl 0145.22203
[3] Arnold, V.I., Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits, Ann. Inst. Fourier., 16, 319-361, (1966) · Zbl 0148.45301
[4] Backus, G.E.; Chandasekhar, S., On cowling’s theorem on the impossibility of self-maintained axisymmetric homogeneous dynamos, Proc. Nat. Acad. Sci., 42, 105-109, (1956) · Zbl 0072.22904
[5] Bineau, M., On the existence of force-free magnetic fields, Commun. Pure Appl. Math., 27, 77-84, (1972) · Zbl 0226.35016
[6] Calderón, A.P., Cauchy integral in Lipschitz curves and related operators, Proc. Nat. Acad. Sci., 74, 1324-1327, (1977) · Zbl 0373.44003
[7] Chae, D.; Constantin, P., Remarks on a Liouville-type theorem for Beltrami flows, IMRN., 20, 10012-10016, (2015) · Zbl 1328.35158
[8] Coifman, R.R.; Mcintosh, A.; Meyer, Y., L’integrale de Cauchy définit un operateur borné sur \(L\)\^{}{2} pour LES courbes lipschitziennes, Ann. Math., 116, 361-387, (1982) · Zbl 0497.42012
[9] Colton D.L., Kress R.: Integral Equation Methods in Scattering Theory. Wiley, New York (1983) · Zbl 0522.35001
[10] Colton D.L., Kress R.: Inverse Acoustic and Electromagnetic Scattering. Springer, Berlin (1992) · Zbl 0760.35053
[11] Constantin, P., An eulerian-Lagrangian approach for incompressible fluids: local theory, J. Am. Math. Soc., 14, 263-278, (2001) · Zbl 0997.76009
[12] Constantin, P.; Majda, A., The Beltrami spectrum for incompressible fluid flows, Commun. Math. Phys., 115, 435-456, (1988) · Zbl 0669.76049
[13] David, G., Opérateurs intégraux singuliers sur certaines courbes du plan complexe, Ann. Sci. Éc. Norm. Supér., 17, 157-189, (1984) · Zbl 0537.42016
[14] Dahlberg, B., On estimates of harmonic measure, Arch. Ration. Mech. Anal., 65, 272-288, (1977) · Zbl 0406.28009
[15] Dahlberg, B., On the Poisson integral for Lipschitz and C* domains, Studia Math., 66, 13-24, (1979) · Zbl 0422.31008
[16] Dahlberg, B.; Kenig, C., Hardy spaces and the Neumann problem in \(L\)\^{}{\(p\)} for laplace’s equation in Lipschitz domains, Ann. Math., 125, 437-465, (1987) · Zbl 0658.35027
[17] Dombre, T.; Frisch, U.; Greene, J.M.; Hénon, M.; Mehr, A.; Soward, A.M., Chaotic streamlines in the ABC flows, J. Fluid Mech., 167, 353-391, (1986) · Zbl 0622.76027
[18] Enciso, A.; Peralta-Salas, D., Existence of knotted vortex tubes in steady Euler flows, Acta Math., 214, 61-134, (2015) · Zbl 1317.35184
[19] Enciso, A.; Peralta-Salas, D., Knots and links in steady solutions of the Euler equation, Ann. Math., 175, 345-367, (2012) · Zbl 1238.35092
[20] Enciso, A.; Peralta-Salas, D., Beltrami fields with a nonconstant proporcionality factor are rare, Arch. Ration. Mech. Anal., 220, 243-260, (2016) · Zbl 1365.35119
[21] Fabes, E.B.; Jodeit, M.; Lewis, J.E., Double layer potentials for domains with corners and edges, Indiana Univ. Math. J., 26, 95-114, (1977) · Zbl 0363.35010
[22] Fabes, E.B.; Jodeit, M.; Riviére, N.M., Potential techniques for boundary value problems on \(C\)\^{}{1} domains, Acta Math., 141, 165-186, (1978) · Zbl 0402.31009
[23] Gilbarg D., Trudinger N.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2001) · Zbl 1042.35002
[24] Giraud, G., Sur certains problèmes non linéaires de Neumann et sur certains problèmes non linéaires mixtes, Ann. Sci. Éc. Norm. Supér., 49, 1-104, (1932) · Zbl 0004.39504
[25] Heinemann, U.: Die regularisierende Wirkung der Randintegraloperatoren der klassischen Potentialtheorie in den Räumen hölderstetiger Funktionen. Diploma Thesis, University of Bayreuth (1992) · Zbl 0622.76027
[26] Hofmann, S.; Kenig, C.; Mayboroda, S.; Pipher, J., Square function/non-tangential maximal function estimates and the Dirichlet problem for non-symmetric elliptic operators, J. Am. Math. Soc., 28, 483-529, (2015) · Zbl 1326.42028
[27] Kaiser, R.; Neudert, M.; Wahl, W., On the existence of force-free magnetic fields with small nonconstant \({α}\) in exterior domains, Commun. Math. Phys., 211, 111-136, (2000) · Zbl 0964.76096
[28] Kleckner, D.; Irvine, W.T.M., Creation and dynamics of knotted vortices, Nat. Phys., 9, 253-258, (2013)
[29] Kress, R., A boundary integral equation method for a Neumann boundary problem for force fields, J. Eng. Math., 15, 29-48, (1981) · Zbl 0477.73077
[30] Li, C.; McIntosh, A.; Semmes, S., Convolution singular integrals on Lipschitz surfaces, J. Am. Math. Soc., 5, 455-481, (1992) · Zbl 0763.42009
[31] Littman, W., Decay at infinity of solutions to partial differential equations with constant coefficients, Trans. AMS, 123, 449-459, (1966) · Zbl 0144.13403
[32] Miranda C.: Partial Differential Equations of Elliptic Type. Springer, Berlin (1970) · Zbl 0198.14101
[33] Miranda, C., Sulle proprieta di regolarita di certe trasformazioni integrali, Mem. Acc. Lincei., 7, 303-336, (1965) · Zbl 0183.12701
[34] Moffatt, H.K., A tsinober, helicity in laminar and turbulent flow, Annu. Rev. Fluid Mech., 24, 281-312, (1992) · Zbl 0751.76018
[35] Moffatt, H.K., Helicity and singular structures in fluid dynamics, PNAS., 111, 3663-3670, (2014) · Zbl 1074.41032
[36] Nadirashvili, N., Liouville theorem for Beltrami flow, Geom. Funct. Anal., 24, 916-921, (2014) · Zbl 1294.35080
[37] Nédélec J.C.: Acoustic and Electromagnetic Equations. Applied Mathematical Sciences. Springer, Berlin (2001)
[38] Neudert, M.; Wahl, W., Asymptotic behaviour of the div-curl problem in exterior domains, Adv. Differ. Equ., 6, 1347-1376, (2001) · Zbl 1016.35068
[39] Pelz, R.; Yakhot, V.; Orszag, S.A.; Shtilman, L.; Levich, E., Velocity-vorticity patterns in turbulent flow, Phys. Rev. Lett., 54, 2505-2509, (1985)
[40] Poyato, D.: Generalized Beltrami fields in exterior domains. An application to the theory of knotted structures in stationary solutions of the 3-D Euler equation (Original title: “Campos de Beltrami generalizados en dominios exteriores. Una aplicación a la teoría de estructuras anudadas en soluciones estacionarias de la ecuación de Euler 3-D”), Master Thesis, University of Granada (2015) · Zbl 0145.22203
[41] Semmes, S.W., A criterion for the boundedness of singular integrals on hypersurfaces, Trans. Am. Math. Soc., 311, 501-513, (1989) · Zbl 0675.42015
[42] Stein E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970) · Zbl 0207.13501
[43] von Wahl, W.: Vorlesung über das Au\({β}\)enraumproblem für die instationären Gleichungen von Navier-Stokes, Rudolph-Lipschitz-Vorsenlug, Sondeforschungsbereich 256: Nichtlineare Partielle Differentialgleichungen 11 (1989)
[44] Wiegelmann, T.; Sakurai, T., Solar force-free magnetic fields, Living Rev. Solar Phys., 9, 5, (2012)
[45] Wilcox, C.H., An expansion theorem for electromagnetic fields, Commun. Pure Appl. Math., 9, 115-134, (1956) · Zbl 0071.21203
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.