×

zbMATH — the first resource for mathematics

Examples of CM curves of genus two defined over the reflex field. (English) Zbl 1397.11103
Summary: P. van Wamelen [Math. Comput. 68, No. 225, 307–320 (1999; Zbl 0906.14025)] lists 19 curves of genus two over \(\mathbb{Q}\) with complex multiplication (CM). However, for each curve, the CM-field turns out to be cyclic Galois over \(\mathbb{Q}\), and the generic case of a non-Galois quartic CM-field did not feature in this list. The reason is that the field of definition in that case always contains the real quadratic subfield of the reflex field.
We extend Van Wamelen’s list to include curves of genus two defined over this real quadratic field. Our list therefore contains the smallest ‘generic’ examples of CM curves of genus two.
We explain our methods for obtaining this list, including a new height-reduction algorithm for arbitrary hyperelliptic curves over totally real number fields. Unlike van Wamelen, we also give a proof of our list, which is made possible by our implementation of denominator bounds of K. Lauter and B. Viray [Am. J. Math. 137, No. 2, 497–533 (2015; Zbl 1392.11033)] for Igusa class polynomials.

MSC:
11G15 Complex multiplication and moduli of abelian varieties
11G05 Elliptic curves over global fields
14K22 Complex multiplication and abelian varieties
11G07 Elliptic curves over local fields
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] DOI: 10.1112/blms/4.3.370 · Zbl 0256.14017
[2] DOI: 10.1006/jabr.2000.8453 · Zbl 0974.14015
[3] DOI: 10.1090/S0002-9947-96-01684-4 · Zbl 0926.11043
[4] DOI: 10.1090/S0025-5718-99-01101-1 · Zbl 0936.14033
[5] DOI: 10.1090/S0025-5718-99-01020-0 · Zbl 0906.14025
[6] DOI: 10.1007/978-3-642-61553-5
[7] DOI: 10.1090/S0025-5718-2013-02712-3 · Zbl 1322.11066
[8] Stoll, J. Reine Angew. Math. 565 pp 79– (2003)
[9] DOI: 10.1353/ajm.2015.0010 · Zbl 1392.11033
[10] DOI: 10.1007/978-1-4612-5485-0
[11] Frey, Handbook of elliptic and hyperelliptic curve cryptography pp 455– (2006)
[12] DOI: 10.2307/1970233 · Zbl 0122.39002
[13] Eisenträger, Arithmetics, geometry, and coding theory (AGCT 2005) pp 161– (2010)
[14] DOI: 10.1016/j.jnt.2010.05.002 · Zbl 1218.11060
[15] Cox, Primes of the form x 2 + ny 2 (1989) · Zbl 0701.11001
[16] DOI: 10.1007/978-1-4612-1210-2
[17] DOI: 10.1017/CBO9780511526084
[18] Goren, Int. Math. Res. Not. IMRN 2012 pp 1068– (2012) · Zbl 1236.14033
[19] DOI: 10.5802/aif.2264 · Zbl 1172.11018
[20] DOI: 10.1016/j.jalgebra.2007.11.016 · Zbl 1140.14042
[21] DOI: 10.1142/9789812701640_0006
[22] DOI: 10.1007/11935230_8 · Zbl 1172.94576
[23] DOI: 10.1007/s00222-005-0459-7 · Zbl 1093.11041
[24] DOI: 10.4310/AJM.2013.v17.n2.a4 · Zbl 1298.11056
[25] DOI: 10.1006/jsco.1996.0125 · Zbl 0898.68039
[26] Shimura, Complex multiplication of abelian varieties and its applications to number theory (1961) · Zbl 0112.03502
[27] Shimura, Abelian varieties with complex multiplication and modular functions (1998) · Zbl 0908.11023
[28] Shimura, Introduction to the arithmetic theory of automorphic functions (1994) · Zbl 0872.11023
[29] DOI: 10.2307/1970768 · Zbl 0242.14009
[30] DOI: 10.1007/978-1-4612-0441-1_21
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.