zbMATH — the first resource for mathematics

On sliding mode control for networked control systems with semi-Markovian switching and random sensor delays. (English) Zbl 1396.93033
Summary: This paper focuses on the problem of sliding mode control for networked control systems with semi-Markovian switching and random measurement, where the measurement channel is assumed to suffer from random sensor delays. A Luenberger observer is designed to generate the estimation of system states, and the integral sliding surface is constructed to guarantee exponential stability of networked semi-Markovian switching systems in the mean square sense. Then, a proper controller is synthesized to ensure that the trajectory of the closed-loop networked semi-Markovian switching systems can be driven onto the prescribed sliding surface. Finally, numerical examples and simulations are provided to illustrate the effectiveness of the integral sliding mode control scheme.

93B12 Variable structure systems
93C30 Control/observation systems governed by functional relations other than differential equations (such as hybrid and switching systems)
93E03 Stochastic systems in control theory (general)
93B50 Synthesis problems
93B05 Controllability
Full Text: DOI
[1] Chang, W. J.; Hsu, F. L., Sliding mode fuzzy control for Takagi-sugeno fuzzy systems with bilinear consequent part subject to multiple constraints, Inf. Sci., 327, 258-271, (2016) · Zbl 1386.93174
[2] Chen, B.; Niu, Y.; Zou, Y., Adaptive sliding mode control for stochastic Markovian jumping systems with actuator degradation, Automatica, 49, 6, 1748-1754, (2013) · Zbl 1360.93150
[3] Chen, B.; Niu, Y.; Zou, Y., Sliding mode control for stochastic Markovian jumping systems with incomplete transition rate, IET Control Theory Appl., 7, 10, 1330-1338, (2013)
[4] Ge, X. H.; Han, Q. L., Distributed event-triggered H_∞ filtering over sensor networks with communication delays, Inf. Sci., 291, 10, 128-142, (2015) · Zbl 1355.94016
[5] Geirhofer, S.; Tong, L.; Sadler, B. M., Dynamic spectrum access in the time domain: modelling and exploiting whitespace, IEEE Commun. Mag., 45, 5, 66-72, (2007)
[6] Ginoya, D.; Shendge, P. D.; Phadke, S. B., Disturbance observer based sliding mode control of nonlinear mismatched uncertain systems, Commun. Nonlinear Sci. Numer. Simul., 26, 98-107, (2015)
[7] Goncalves, A. P.C.; Fioravanti, A. R.; Geromel, J. C., Markov jump linear systems and filtering through network transmitted measurements, Signal Process., 90, 10, 2842-2850, (2010) · Zbl 1197.94056
[8] He, Y.; Wang, Q. G.; Xie, L. H.; Lin, C., Further improvement of free-weighting matrices technique for systems with time-varying delay, IEEE Trans. Autom. Control, 52, 2, (2007) · Zbl 1366.34097
[9] Hou, Z.; Luo, J.; Shi, P.; Nguang, S. K., Stochastic stability of Itô differential equations with semi-Markovian jump parameters, IEEE Trans. Autom. Control, 51, 8, 1383-1387, (2006) · Zbl 1366.60082
[10] Hu, S. L.; Yue, D.; Peng, C.; Xie, X. P.; Yin, X. X., Event-triggered controller design of nonlinear discrete-time networked control systems in T-S fuzzy model, Appl. Soft Comput., 30, 400-411, (2015)
[11] Huang, J.; Shi, Y., Stochastic stability of semi-Markov jump linear systems: an LMI approach, 50th IEEE Conference on Decision and Control and European Control Conference, Orlando, USA, 4668-4673, (2011)
[12] Ji, Y. D.; Qiu, J. Q., Robust stability criterion for uncertain stochastic systems with time-varying delay via sliding mode control, Appl. Math. Comput., 238, 70-81, (2014) · Zbl 1334.93136
[13] Jiang, X. W.; Hu, B.; Guan, Z. H.; Zhang, X. H.; Yu, L., Best achievable tracking performance for networked control systems with encoder-decoder, Inf. Sci., 305, 184-195, (2015) · Zbl 1360.93777
[14] Kao, Y. G.; Xie, J.; Wang, C. H.; Karimi, H. R., A sliding mode approach to H_∞ non-fragile observer-based control design for uncertain Markovian neutral-type stochastic systems, Automatica, 52, 218-226, (2015) · Zbl 1309.93038
[15] Kao, Y. G.; Wang, C. H.; Xie, J.; Karimi, H. R.; Li, W., H_∞ sliding mode control for uncertain neutral-type stochastic systems with Markovian jumping parameters, Inf. Sci., 314, 200-211, (2015) · Zbl 1386.93063
[16] Kim, K.; Kumar, P., Real-time middleware for networked control systems and application to an unstable system, IEEE Trans. Control Syst. Technol., 21, 5, 1898-1906, (2013)
[17] Li, H.; Zhao, Q., Reliability evaluation of fault tolerant control with a semi-Markov fault detection and isolation model, Proc. Inst. Mech. Eng., Part I: J. Syst. Control Eng., 220, 5, 329-338, (2006)
[18] Lin, C.; Wang, Z.; Yang, F., Observer-based networked control for continuous-time systems with random sensor delays, Automatica, 45, 2, 578-584, (2009) · Zbl 1158.93349
[19] Liu, M.; Ho, D. W.C.; Niu, Y., Stabilization of Markovian jump linear system over networks with random communication delay, Automatica, 45, 2, 416-421, (2009) · Zbl 1158.93412
[20] Liu, X.; Xi, H., On exponential stability of neutral delay Markovian jump systems with nonlinear perturbations and partially unknown transition rates, Int. J. Control Autom. Syst., 12, 1, 1-11, (2014)
[21] Liu, X.; Ma, G. Q.; Jiang, X. F.; Xi, H., H_∞ stochastic synchronization for master-slave semi-Markovian switching system via sliding mode control, Complexity, (2015)
[22] Luan, X.; Shi, P.; Liu, F., Stabilization of networked control systems with random delays, IEEE Trans. Ind. Electron., 58, 9, 4323-4330, (2011)
[23] Luan, X.; Shi, P.; Liu, F., Finite-time stabilisation for Markov jump systems with Gaussian transition probabilities, IET Control Theory Appl., 7, 2, 298-304, (2013)
[24] Ma, J.; Sun, S. L., Optimal linear estimators for systems with random sensor delays, multiple packet dropouts and uncertain observations, IEEE Trans. Signal Process., 59, 11, 5181-5192, (2011) · Zbl 1391.93215
[25] Mao, X. R., Exponential stability of stochastic delay interval systems with Markovian switching, IEEE Trans. Autom. Control, 47, 10, 1604-1612, (2002) · Zbl 1364.93685
[26] Mao, X. R.; Yuan, C. G., Stochastic Differential Equations With Markovian Switching, (2006), Imperial College Press
[27] Moayedi, M.; Foo, Y. K.; Soh, Y. C., Adaptive Kalman filtering in networked systems with random sensor delays, multiple packet dropouts and missing measurements, IEEE Trans. Signal Process., 58, 3, 1577-1588, (2010) · Zbl 1391.93252
[28] Niu, Y. G.; Ho, D. W.C.; Wang, X. Y., Sliding mode control for Itô stochastic systems with Markovian switching, Automatica, 43, 10, 1784-1790, (2007) · Zbl 1119.93063
[29] Quevedo, D. E.; Silva, E. I.; Goodwin, G. C., Subband coding for networked control systems, Int. J. Robust Nonlinear Control, 19, 16, 1817-1836, (2009) · Zbl 1298.93045
[30] Shi, P.; Liu, M.; Zhang, L. X., Fault-tolerant sliding-mode-observer synthesis of Markovian jump systems using quantized measurements, IEEE Trans. Ind. Electron., 62, 9, 5910-5918, (2015)
[31] Shi, Y.; Yu, B., Robust mixed H_2/H_∞ control of networked control systems with random time delays in both forward and backward communication links, Automatica, 47, 4, 754-760, (2011) · Zbl 1215.93045
[32] Shi, Y.; Huang, J.; Yu, B., Robust tracking control of networked control systems: application to a networked DC motor, IEEE Trans. Ind. Electron., 60, 12, 5864-5874, (2013)
[33] Sun, S. L.; Wang, G. H., Modeling and estimation for networked systems with multiple random transmission delays and packet losses, Syst. Control Lett., 73, 6-16, (2014) · Zbl 1297.93165
[34] Tan, C.; Li, L.; Zhang, H. S., Stabilization of networked control systems with both network-induced delay and packet dropout, Automatica, 59, 194-199, (2015) · Zbl 1326.93127
[35] Tang, X. M.; Ding, B. C., Model predictive control of linear systems over networks with data quantizations and packet losses, Automatica, 49, 5, 1333-1339, (2013) · Zbl 1319.93025
[36] Tsai, Y. W.; Huynh, V. V., A multitask sliding mode control for mismatched uncertain large-scale systems, Int. J. Control, 88, 9, 1911-1923, (2015) · Zbl 1338.93105
[37] Wang, B. X.; Guan, Z. H.; Yuan, F. S., Optimal tracking and two-channel disturbance rejection under control energy constraint, Automatica, 47, 733-738, (2011) · Zbl 1245.93063
[38] Wang, H.; Shi, P.; Lim, C. C.; Xue, Q., Event-triggered control for networked Markovian jump systems, Int. J. Robust Nonlinear Control, 25, 17, 3422-3438, (2015) · Zbl 1338.93348
[39] Wang, H.; Ying, Y. J.; Lu, R. Q.; Xue, A. K., Network-based H_∞ control for singular systems with event-triggered sampling scheme, Inf. Sci., 329, 540-551, (2016) · Zbl 1386.93198
[40] Wang, J.; Shen, H., Passivity-based fault-tolerant synchronization control of chaotic neural networks against actuator faults using the semi-Markov jump model approach, Neurocomputing, 143, 51-56, (2014)
[41] Wang, Z. D.; Yang, F. W.; Ho, D. W.C.; Liu, X. H., Robust variance-constrained H_∞ control for stochastic systems with multiplicative noises, J. Math. Anal. Appl., 328, 487-502, (2007) · Zbl 1117.93068
[42] Wen, S. P.; Zeng, Z. G.; Huang, T. W., Observer-based H_∞ control of discrete time-delay systems with random communication packet losses and multiplicative noises, Appl. Math. Comput., 219, 12, 6484-6493, (2013) · Zbl 1284.93219
[43] Wu, L. G.; Ho, D. W.C., Sliding mode control of singular stochastic hybrid systems, Automatica, 46, 4, 779-783, (2010) · Zbl 1193.93184
[44] Wu, Z. G.; Shi, P.; Su, H.; Chu, J., Asynchronous \(l_2 - l_\infty\) filtering for discrete-time stochastic Markov jump systems with randomly occurred sensor nonlinearities, Automatica, 50, 1, 180-186, (2014) · Zbl 1417.93317
[45] Xiao, N.; Xie, L.; Fu, M., Stabilization of Markov jump linear systems using quantized state feedback, Automatica, 46, 10, 1696-1702, (2010) · Zbl 1204.93127
[46] Xiong, J.; Lam, J., Robust H_2 control of Markovian jump systems with uncertain switching probabilities, Int. J. Syst. Sci., 40, 3, 255-265, (2009) · Zbl 1167.93335
[47] Yang, R.; Liu, G. P.; Shi, P.; Thomas, C.; Basin, M. V., Predictive output feedback control for networked control systems, IEEE Trans. Ind. Electron., 61, 1, 512-520, (2014)
[48] Yin, Y.; Shi, P.; Liu, F.; Teo, K. L., Observer-based H_∞ control on nonhomogeneous Markov jump systems with nonlinear input, Int. J. Robust Nonlinear Control, 24, 13, 1903-1924, (2014) · Zbl 1301.93061
[49] You, K. Y.; Fu, M. Y.; Xie, L. H., Mean square stability for Kalman filtering with Markovian packet losses, Automatica, 47, 12, 2647-2657, (2011) · Zbl 1235.93246
[50] Yue, D.; Tian, E.; Wang, Z.; Lam, J., Stabilization of systems with probabilistic interval input delay and its application to networked control systems, IEEE Trans. Syst. Man Cybern., 39, 4, 939-945, (2009)
[51] Zhang, H.; Wang, J.; Shi, Y., Robust H_∞ sliding-mode control for Markovian jump systems subject to intermittent observations and partially known transition probabilities, Syst. Control Lett., 62, 12, 1114-1124, (2013) · Zbl 1282.93077
[52] Zhang, J.; Lam, J.; Xia, Y., Output feedback delay compensation control for networked control systems with random delays, Inf. Sci., 265, 154-166, (2014) · Zbl 1327.93363
[53] Zhang, L.; Shi, Y.; Chen, T., A new method for stabilization of networked control systems with random delays, IEEE Trans. Autom. Control, 50, 8, 1177-1181, (2005) · Zbl 1365.93421
[54] Zhang, L. X.; Gao, H.; Kaynak, O., Network-induced constraints in networked control systems-a survey, IEEE Trans. Autom. Control, 58, 1, 403-416, (2013)
[55] Zhu, Q.; Yu, X.; Song, A. G.; Fei, S. M.; Cao, Z. Q.; Yang, Y. Q., On sliding mode control of single input Markovian jump systems, Automatica, 50, 11, 2897-2904, (2014) · Zbl 1300.93053
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.