zbMATH — the first resource for mathematics

Dynamic optimal execution in a mixed-market-impact Hawkes price model. (English) Zbl 1396.91672
This paper concerns a financial model with “mesoscopic” time scale (intermediate between high and low frequencies), the authors considering it more convenient since the order flow is essentially discrete. The price model is defined via a fundamental price component \(S\) and a “mesoscopic” price deviation \(D\): for any \(t\in[0,T)\), \(P_t= S_t+ D_t\). Denoting by \(X\) the strategy, \(dS_t= q(\nu dN_t+\varepsilon dX_t)\), \(dD_t= -\rho D_t dt+{1\over q}[(1-\nu)dN_t+ (1-\varepsilon)dX_t]\), \(q> 0\), \(\nu\) being the market resilience parameter, \((N_t)\) is the process of market orders defined on a probability space \((\Omega,{\mathcal F},{\mathcal P})\), squares integrable (for any \(t\), \(\sup_{0\leq s\leq t}E(X^2_s),\,<\infty\)), with bounded variation. More specifically, \((N_t)\) is the impact Hawkes price model, meaning that \(N= N^+-N^-\), \(N^\pm\) admit the intensities \(\kappa^\pm\), and the Poisson measures \(n^\pm(dt, dv)\). The price process is impacted by the strategy \(X\), an \({\mathcal F}^{{\mathcal N}}\)-adapted, bounded variation right continuous left limited process, admissible if moreover \(X_0= x_0\), \(X_{T^+}= 0\) almost surely. This strategy induces a cost \(C(X)\). The aim is to find an explicit strategy which minimizes the expected cost \(E[C(X)]\). A “price manipulation strategy” is an admissible strategy such that \(E[C(X)]< 0\).
The main results firstly provide an explicit optimal strategy and the associated value. Secondly, they determine necessary and sufficient conditions on the model parameters to exclude price manipulation strategies. Finally, in the case of the Poisson model (which cannot avoid price manipulation strategies), there exist simple and robust arbitrage strategies under the hypotheses \(\kappa^+= \kappa^->0\), \(N^+\) and \(N^-\) have the same jump law.

91G10 Portfolio theory
91B24 Microeconomic theory (price theory and economic markets)
60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)
49J15 Existence theories for optimal control problems involving ordinary differential equations
Full Text: DOI
[1] Abergel, F.; Jedidi, A., A mathematical approach to order book modeling, Int. J. Theor. Appl. Finance, 16, 1350025, (2013) · Zbl 1292.91197
[2] Alfonsi, A.; Fruth, A.; Schied, A., Optimal execution strategies in limit order books with general shape functions, Quant. Finance, 10, 143-157, (2010) · Zbl 1185.91199
[3] Alfonsi, A.; Schied, A., Capacitary measures for completely monotone kernels via singular control, SIAM J. Control Optim., 51, 1758-1780, (2013) · Zbl 1268.49001
[4] Alfonsi, A.; Schied, A.; Slynko, A., Order book resilience, price manipulation, and the positive portfolio problem, SIAM J. Financ. Math., 3, 511-533, (2012) · Zbl 1255.91412
[5] Almgren, R.; Chriss, N., Optimal execution of portfolio transactions, J. Risk, 3, 5-39, (2000)
[6] Bacry, E.; Delattre, S.; Hoffmann, M.; Muzy, J.F., Modelling microstructure noise with mutually exciting point processes, Quant. Finance, 13, 65-77, (2013) · Zbl 1280.91073
[7] Bacry, E.; Delattre, S.; Hoffmann, M.; Muzy, J.F., Some limit theorems for Hawkes processes and application to financial statistics, Stoch. Process. Appl., 123, 2475-2499, (2013) · Zbl 1292.60032
[8] Bacry, E.; Muzy, J.-F., Hawkes model for price and trades high-frequency dynamics, Quant. Finance, 14, 1147-1166, (2014) · Zbl 1402.91750
[9] Bayraktar, E.; Ludkovski, M., Optimal trade execution in illiquid markets, Math. Finance, 21, 681-701, (2011) · Zbl 1233.91335
[10] Bertsimas, D.; Lo, A., Optimal control of execution costs, J. Financ. Mark., 1, 1-50, (1998)
[11] Bouchaud, J.-P.; Gefen, Y.; Potters, M.; Wyart, M., Fluctuations and response in financial markets: the subtle nature of “random” price changes, Quant. Finance, 4, 176-190, (2004) · Zbl 1405.91730
[12] Cont, R.; Larrard, A., Price dynamics in a Markovian limit order market, SIAM J. Financ. Math., 4, 1-25, (2013) · Zbl 1288.91092
[13] Fonseca, J.; Zaatour, R., Hawkes process: fast calibration, application to trade clustering, and diffusive limit, J. Futures Mark., 34, 548-579, (2014)
[14] Daley, D.J., Vere-Jones, D.: An Introduction to the Theory of Point Processes. Vol. I. Elementary Theory and Methods, 2nd edn. Probability and Its Applications (New York). Springer, New York (2003) · Zbl 1026.60061
[15] Donier, J.: Market impact with autocorrelated order flow under perfect competition (2012). Unpublished. Available online: http://arxiv.org/abs/1212.4770 · Zbl 1284.91518
[16] Eisler, Z.; Bouchaud, J.-P.; Kockelkoren, J., The price impact of order book events: market orders, limit orders and cancellations, Quant. Finance, 12, 1395-1419, (2012) · Zbl 1279.91072
[17] Embrechts, P.; Liniger, T.; Lin, L., Multivariate Hawkes processes: an application to financial data, J. Appl. Probab., 48A, 367-378, (2011) · Zbl 1242.62093
[18] Farmer, J.D.; Gerig, A.; Lillo, F.; Waelbroeck, H., How efficiency shapes market impact, Quant. Finance, 13, 1743-1758, (2013) · Zbl 1284.91518
[19] Filimonov, V.; Sornette, D., Quantifying reflexivity in financial markets: toward a prediction of flash crashes, Phys. Rev. E, 85, (2012)
[20] Garèche, A.; Disdier, G.; Kockelkoren, J.; Bouchaud, J.-P., Fokker-Planck description for the queue dynamics of large tick stocks, Phys. Rev. E, 88, (2013)
[21] Gatheral, J., No-dynamic-arbitrage and market impact, Quant. Finance, 10, 749-759, (2010) · Zbl 1194.91208
[22] Gatheral, J.; Schied, A.; Slynko, A., Transient linear price impact and Fredholm integral equations, Math. Finance, 22, 445-474, (2012) · Zbl 1278.91061
[23] Guéant, O., Optimal execution and block trade pricing: a general framework, Appl. Math. Finance, 22, 336-365, (2015) · Zbl 1396.91687
[24] Hardiman, S.; Bercot, N.; Bouchaud, J.-P., Critical reflexivity in financial markets: a hawkes process analysis, Eur. Phys. J. B, 86, 1-9, (2013)
[25] Hawkes, A.G., Spectra of some self-exciting and mutually exciting point processes, Biometrika, 58, 83-90, (1971) · Zbl 0219.60029
[26] Huang, W.; Lehalle, C.-A.; Rosenbaum, M., Simulating and analyzing order book data: the queue-reactive model, J. Am. Stat. Assoc., 110, 107-122, (2015) · Zbl 1373.62519
[27] Huberman, G.; Stanzl, W., Price manipulation and quasi-arbitrage, Econometrica, 72, 1247-1275, (2004) · Zbl 1141.91450
[28] Thibault, J.; Rosenbaum, M., Limit theorems for nearly unstable Hawkes processes, Ann. Appl. Probab., 25, 600-631, (2015) · Zbl 1319.60101
[29] Mastromatteo, I.; Tóth, B.; Bouchaud, J.-P., Agent-based models for latent liquidity and concave price impact, Phys. Rev. E, 89, (2014)
[30] Obizhaeva, A.; Wang, J., Optimal trading strategy and supply/demand dynamics, J. Financ. Mark., 16, 1-32, (2013)
[31] Potters, M.; Bouchaud, J.-P., More statistical properties of order books and price impact, Physica A, 324, 133-140, (2003) · Zbl 1072.91561
[32] Predoiu, S.; Shaikhet, G.; Shreve, S., Optimal execution in a general one-sided limit-order book, SIAM J. Financ. Math., 2, 183-212, (2011) · Zbl 1222.91062
[33] Robert, C.Y.; Rosenbaum, M., A new approach for the dynamics of ultra-high-frequency data: the model with uncertainty zones, J. Financ. Econom., 9, 344-366, (2011)
[34] Stoikov, S., Waeber, R.: Optimal asset liquidation using limit order book information (2012). Preprint. SSRN eLibrary. Available online: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2113827 · Zbl 1402.91179
[35] Tóth, B.; Palit, I.; Lillo, F.; Farmer, J.D., Why is order flow so persistent?, J. Econ. Dyn. Control, 51, 218-239, (2015) · Zbl 1402.91179
[36] Zheng, B.; Roueff, F.; Abergel, F., Modelling bid and ask prices using constrained Hawkes processes: ergodicity and scaling limit, SIAM J. Financ. Math., 5, 99-136, (2014) · Zbl 1323.37054
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.