×

Modular generalized Springer correspondence. III: Exceptional groups. (English) Zbl 1396.17004

This paper is the third of a series of three papers devoted to constructing and describing a modular generalized Springer correspondence for connected reductive groups. They complete the construction of the modular generalized Springer correspondence for an arbitrary connected reductive group, with a uniform proof of the disjointness of induction series that avoids the case-by-case arguments for classical groups used in previous papers in the series.
Reviewer: Hu Jun (Beijing)

MSC:

17B08 Coadjoint orbits; nilpotent varieties
20G05 Representation theory for linear algebraic groups

Software:

CHEVIE
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Achar, P., Henderson, A., Juteau, D., Riche, S.: Modular generalized Springer correspondence I: the general linear group. J. Eur. Math. Soc. (JEMS) 18, 1405-1436 (2016) · Zbl 1396.17002 · doi:10.4171/JEMS/618
[2] Achar, P., Henderson, A., Juteau, D., Riche, S.: Modular generalized Springer correspondence II: classical groups. J. Eur. Math. Soc. arXiv:1404.1096 (to appear) · Zbl 1396.17003
[3] Achar, P., Mautner, C.: Sheaves on nilpotent cones, Fourier transform, and a geometric Ringel duality. Mosc. Math. J. 15, 407-423 (2015) · Zbl 1383.17005
[4] Bonnafé, C.: Actions of relative Weyl groups. I. J. Group Theory 7(1), 1-37 (2004) · Zbl 1049.20026 · doi:10.1515/jgth.2003.040
[5] Bonnafé, C.: Éléments unipotents réguliers des sous-groupes de Levi. Canad. J. Math. 56(2), 246-276 (2004) · Zbl 1080.20037 · doi:10.4153/CJM-2004-012-0
[6] Carter, R.W.: Finite groups of Lie type: conjugacy classes and complex characters. Wiley, New York (1985) · Zbl 0567.20023
[7] Collingwood, D.H., McGovern, W.M.: Nilpotent orbits in semisimple Lie algebras. Van Nostrand Reinhold Co., New York (1993) · Zbl 0972.17008
[8] Digne, F., Michel, J.: Representations of Finite Groups of Lie Type, London Mathematical Society Student Texts, vol. 21. Cambridge University Press, Cambridge (1991) · Zbl 0815.20014 · doi:10.1017/CBO9781139172417
[9] Evens, S., Mirković, I.: Fourier transform and the Iwahori-Matsumoto involution. Duke Math. J. 86, 435-464 (1997) · Zbl 0869.22010 · doi:10.1215/S0012-7094-97-08613-0
[10] Geck, M., Hiss, G., Malle, G.: Cuspidal unipotent Brauer characters. J. Algebra 168(1), 182-220 (1994) · Zbl 0840.20034 · doi:10.1006/jabr.1994.1226
[11] Geck, M., Hiss, G., Malle, G.: Towards a classification of the irreducible representations in non-describing characteristic of a finite group of Lie type. Math. Z. 221, 353-386 (1996) · Zbl 0858.20008 · doi:10.1007/PL00004253
[12] Green, J.A.: On the indecomposable representations of a finite group. Math. Z. 70 (1958/59), 430-445 · Zbl 0086.02403
[13] Howlett, R.B.: Normalizers of parabolic subgroups of reflection groups. J. Lond. Math. Soc. (2) 21(1), 62-80 (1980) · Zbl 0427.20040 · doi:10.1112/jlms/s2-21.1.62
[14] Juteau, D.: Modular Springer correspondence, decomposition matrices and basic sets. Bull. Soc. Math. France arXiv:1410.1471 (to appear) · Zbl 1490.14083
[15] Juteau, D., Lecouvey, C., Sorlin, K.: Springer basic sets and modular Springer correspondence for classical types. arXiv:1410.1477 · Zbl 1490.14083
[16] Juteau, D., Mautner, C., Williamson, G.: Parity sheaves. J. Am. Math. Soc. 27(4), 1169-1212 (2014) · Zbl 1344.14017 · doi:10.1090/S0894-0347-2014-00804-3
[17] Kiehl, R., Weissauer, R.: Weil Conjectures, Perverse Sheaves and l’adic Fourier Transform, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3rd Series, vol. 42. Springer-Verlag, Berlin (2001) · Zbl 0988.14009 · doi:10.1007/978-3-662-04576-3
[18] Lusztig, G.: Intersection cohomology complexes on a reductive group. Invent. Math. 75, 205-272 (1984) · Zbl 0547.20032 · doi:10.1007/BF01388564
[19] Lusztig, G.: Character sheaves I. Adv. Math. 56(3), 193-237 (1985) · Zbl 0586.20018 · doi:10.1016/0001-8708(85)90034-9
[20] Lusztig, G.: Character sheaves III. Adv. Math. 57(3), 266-315 (1985) · Zbl 0594.20031 · doi:10.1016/0001-8708(85)90065-9
[21] Lusztig, G.: Character sheaves V. Adv. Math. 61(2), 103-155 (1986) · Zbl 0602.20036 · doi:10.1016/0001-8708(86)90071-X
[22] Lusztig, G.: Cuspidal local systems and graded Hecke algebras. II, Representations of groups (Banff, AB, 1994), CMS Conf. Proc., vol. 16, Amer. Math. Soc., Providence, RI, 1995, 217-275 · Zbl 0841.22013
[23] Lusztig, G.: On the generalized Springer correspondence. arXiv:1608.02223 · Zbl 0579.20035
[24] Lusztig, G., Spaltenstein, N.: On the generalized Springer correspondencefor classical groups, Algebraic groups and related topics (Kyoto/Nagoya,1983), Adv. Stud. Pure Math., vol. 6, North-Holland Publishing Co., Amsterdam, 1985, pp. 289-316 · Zbl 0579.20035
[25] Mars, J.G.M., Springer, T.A.: Character sheaves. Astérisque 173-174, 111-198 (1989) · Zbl 0706.20032
[26] Michel, J.: The development version of the CHEVIE package of GAP3. arXiv:1310.7905 · Zbl 1322.20002
[27] Spaltenstein, N.: On the generalized Springer correspondence for exceptional groups, Algebraic groups and related topics (Kyoto/Nagoya,1983), Adv. Stud. Pure Math., vol. 6, North-Holland Publishing Co., Amsterdam, 1985, pp. 317-338 · Zbl 0574.20029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.