×

zbMATH — the first resource for mathematics

The generalized Rabinowitsch trick. (English) Zbl 1396.13025
Kotsireas, Ilias S. (ed.) et al., Applications of computer algebra, Kalamata, Greece, July 20–23, 2015. Cham: Springer (ISBN 978-3-319-56930-7/hbk; 978-3-319-56932-1/ebook). Springer Proceedings in Mathematics & Statistics 198, 219-229 (2017).
Summary: The famous Rabinowitsch trick for Hilbert’s Nullstellensatz is generalized and used to analyze various properties of a polynomial with respect to an ideal. These properties include, among others, (i) checking whether the polynomial is a zero divisor in the residue class ring defined by the associated ideal and (ii) checking whether the polynomial is invertible in the residue class ring defined by the associated ideal. Just like using the classical Rabinowitsch’s trick, its generalization can also be used to decide whether the polynomial is in the radical of the ideal. Some of the byproducts of this construction are that it is possible to be more discriminatory in determining whether the polynomial is a zero divisor (invertible, respectively) in the quotient ring defined by the ideal, or the quotient ideal constructed by localization using the polynomial. This method also computes the smallest integer which gives the saturation ideal of the ideal with respect to a polynomial. The construction uses only a single Gröbner basis computation to achieve all these results.
For the entire collection see [Zbl 1379.13001].

MSC:
13P10 Gröbner bases; other bases for ideals and modules (e.g., Janet and border bases)
13A15 Ideals and multiplicative ideal theory in commutative rings
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] 1. Bayer, D.: The Division Algorithm and the Hilbert Scheme. Ph.D. thesis, Harvard (1981)
[2] 2. Buchberger, B.: Groebner bases: an algorithmic method in polynomial ideal theory. In: Bose, N.K. (ed.) Multidimensional Systems Theory, pp. 184-232. D. Reidel Publishing, Dordrecht (1985)
[3] 3. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms, 3rd edn. Springer, New York (2007)
[4] 4. Brownawell, W.D.: Rabinowitsch trick. In: Encyclopedia of Mathematics. Springer, Berlin (2001)
[5] 5. Duval, D.: Algebraic numbers: an example of dynamic evaluation. J. Symb. Comput. 18 , 429-445 (1994) · Zbl 0827.68061
[6] 6. Kapur, D.: Geometry theorem proving using Hilbert’s Nullstellensatz. In: Proceedings of the ISSAC 1986, pp. 202-208. ACM Press, New York (1986)
[7] 7. Kapur, D., Sun, Y., Wang, D.: An efficient algorithm for computing comprehensive Gröbner system for a parametric polynomial system. J. Symb. Comput. 49 , 27-44 (2013) · Zbl 1255.13018
[8] 8. Kapur, D., Sun, Y., Wang, D.: An efficient method for computing comprehensive Gröbner bases. J. Symb. Comput. 52 , 124-142 (2013) · Zbl 1283.13024
[9] 9. Rabinowitsch, J.L.: Zum Hilbertschen Nullstellensatz. Mathematische Annalen 102 (1), 520 (1929) · JFM 55.0103.04
[10] 10. Mora, T.: Solving Polynomial Equation Systems II. Cambridge University Press, New York (2005) · Zbl 1161.13306
[11] 11. Noro, M.: Modular dynamic evaluation. In: Proceedings of the ISSAC 2006, pp. 262-268. ACM Press, New York (2006) · Zbl 1356.68292
[12] 12. Sato, Y., Suzuki, A.: Computation of inverses in residue class rings of parametric polynomial ideal. In: Proceedings of the ISSAC 2009, pp. 311-316. ACM Press, New York (2009) · Zbl 1237.13040
[13] 13. Shannon, D., Sweedler, M.: Using Gröbner bases to determine algebra membership, splitting surjective algebra homomorphisms and determine birational equivalence. J. Symb. Comput. 6 , 267-273 (1988) · Zbl 0681.68052
[14] 14. Spear, D.A.: A constructive approach to commutative ring theory. In: Proceedings of the 1977 MACSYMA Users Conference, pp. 369-376 (1977)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.