×

Research on improved adaptive control for static synchronous compensator in power system. (English) Zbl 1395.94433

Summary: This paper deals with the problems of “explosion of term,” uncertain parameter in static synchronous compensator (STATCOM) system with nonlinear time-delay. An improved adaptive controller is proposed to enhance the transient stability of system states and reduce computational complexity of STATCOM control system. In contrast to backstepping control scheme in high order systems, the problem of “explosion of term” is avoided by designing dynamic surface controller. The low pass filter is included to allow a design where the model is not differentiated and thus has prevented the mathematical complexities effectively. In addition, unlike the traditional adaptive control schemes, the certainty equivalence principle is not required for estimating the uncertain parameter by system immersion and manifold invariant (I&I) adaptive control. A smooth function is added to ensure that the estimation error converges to zero in finite time. The effectiveness of the proposed controller is verified by the simulations. Compared with adaptive backstepping and proportion integration differentiation (PID), the oscillation amplitudes of transient response are reduced by nearly half, and the time of reaching steady state is shortened by at least 11%.

MSC:

94C99 Circuits, networks
93C40 Adaptive control/observation systems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Rao, P.; Crow, M. L.; Yang, Z., STATCOM control for power system voltage control applications, IEEE Transactions on Power Delivery, 15, 4, 1311-1317, (2000) · doi:10.1109/61.891520
[2] Astolfi, A.; Karagiannis, D.; Ortega, R., Nonlinear and Adaptive Control with Applications, (2007), Springer Science & Business Media · Zbl 1119.93059
[3] Song, W.; Huang, A. Q., Fault-tolerant design and control strategy for cascaded H-bridge multilevel converter-based STATCOM, IEEE Transactions on Industrial Electronics, 57, 8, 2700-2708, (2010) · doi:10.1109/TIE.2009.2036019
[4] Hu, X.; Li, S.; Peng, H.; Sun, F., Charging time and loss optimization for LiNMC and LiFePO_{4} batteries based on equivalent circuit models, Journal of Power Sources, 239, 449-457, (2013) · doi:10.1016/j.jpowsour.2013.03.157
[5] Hu, X. S.; Murgovski, N.; Johannesson, L. M.; Egardt, B., Comparison of three electrochemical energy buffers applied to a hybrid bus powertrain with simultaneous optimal sizing and energy management, IEEE Intelligent Transportation Systems Magazine, 15, 3, 1193-1205, (2014) · doi:10.1109/tits.2013.2294675
[6] Zhang, L.; Wang, Z.; Hu, X.; Sun, F.; Dorrell, D. G., A comparative study of equivalent circuit models of ultracapacitors for electric vehicles, Journal of Power Sources, 274, 899-906, (2015) · doi:10.1016/j.jpowsour.2014.10.170
[7] Mohd Basri, M. A.; Husain, A. R.; Danapalasingam, K. A., Intelligent adaptive backstepping control for MIMO uncertain non-linear quadrotor helicopter systems, Transactions of the Institute of Measurement and Control, 37, 3, 345-361, (2015) · doi:10.1177/0142331214538900
[8] Zhou, J.; Wen, C.; Zhang, Y., Adaptive backstepping control of a class of uncertain nonlinear systems with unknown backlash-like hysteresis, IEEE Transactions on Automatic Control, 49, 10, 1751-1757, (2004) · Zbl 1365.93251 · doi:10.1109/tac.2004.835398
[9] Hu, X.-S.; Sun, F.-C.; Zou, Y., Online model identification of lithium-ion battery for electric vehicles, Journal of Central South University of Technology, 18, 5, 1525-1531, (2011) · doi:10.1007/s11771-011-0869-1
[10] Hu, X. S.; Sun, F.; Zou, Y., Comparison between two model-based algorithms for Li-ion battery SOC estimation in electric vehicles, Simulation Modelling Practice and Theory, 34, 1-11, (2013) · doi:10.1016/j.simpat.2013.01.001
[11] Sun, F.; Hu, X.; Zou, Y.; Li, S., Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles, Energy, 36, 5, 3531-3540, (2011) · doi:10.1016/j.energy.2011.03.059
[12] Zhang, L.; Wang, Z.; Sun, F.; Dorrell, D. G., Online parameter identification of ultracapacitor models using the extended Kalman filter, Energies, 7, 5, 3204-3217, (2014) · doi:10.3390/en7053204
[13] Zhang, Y.; Wen, C.; Soh, Y. C., Adaptive backstepping control design for systems with unknown high-frequency gain, IEEE Transactions on Automatic Control, 45, 12, 2350-2354, (2000) · Zbl 0990.93061 · doi:10.1109/9.895572
[14] Farokhi Moghadam, H.; Vasegh, N., Robust PID stabilization of linear neutral time-delay systems, International Journal of Computers Communications & Control, 9, 2, 201-208, (2014) · doi:10.15837/ijccc.2014.2.39
[15] Zhang, L.; Zhang, A.; Ren, Z.; Li, G.; Zhang, C.; Han, J., Hybrid adaptive robust control of static var compensator in power systems, International Journal of Robust and Nonlinear Control, 24, 12, 1707-1723, (2014) · Zbl 1301.93060 · doi:10.1002/rnc.2957
[16] Karagiannis, D.; Astolfi, A., Nonlinear adaptive control of systems in feedback form: an alternative to adaptive backstepping, Systems & Control Letters, 57, 9, 733-739, (2008) · Zbl 1153.93020 · doi:10.1016/j.sysconle.2008.02.006
[17] Astolfi, A.; Ortega, R., Immersion and invariance: a new tool for stabilization and adaptive control of nonlinear systems, IEEE Transactions on Automatic Control, 48, 4, 590-606, (2003) · Zbl 1364.93618 · doi:10.1109/tac.2003.809820
[18] Swaroop, D.; Hedrick, J. K.; Yip, P. P.; Gerdes, J. C., Dynamic surface control for a class of nonlinear systems, IEEE Transactions on Automatic Control, 45, 10, 1893-1899, (2000) · Zbl 0991.93041 · doi:10.1109/tac.2000.880994
[19] Yoo, S. J.; Park, J. B.; Choi, Y. H., Adaptive dynamic surface control for stabilization of parametric strict-feedback nonlinear systems with unknown time delays, IEEE Transactions on Automatic Control, 52, 12, 2360-2364, (2007) · Zbl 1366.93593 · doi:10.1109/tac.2007.910715
[20] Jiang, N.; Li, S.; Liu, T.; Dong, X., Nonlinear large disturbance attenuation controller design for the power systems with STATCOM, Applied Mathematics and Computation, 219, 20, 10378-10386, (2013) · Zbl 1292.93051 · doi:10.1016/j.amc.2013.04.011
[21] Li, W. L.; Jing, Y. W.; Liu, X. P.; Wang, B., Nonlinear robust control based on adaptive backstepping design for STATCOM, Journal of Northeastern University (Natural Science), 24, 221-224, (2003)
[22] Zhang, C.; Aimin, Z.; Hang, Z.; Nan, W.; Zhigang, R.; Huang, J.; Yingsan, G., An advanced adaptive backstepping control method for STATCOM, Proceedings of the 26th Chinese Control And Decision Conference (CCDC ’14), IEEE · doi:10.1109/ccdc.2014.6852466
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.