×

zbMATH — the first resource for mathematics

Auxiliary function-based integral inequalities for quadratic functions and their applications to time-delay systems. (English) Zbl 1395.93450
Summary: Finding integral inequalities for quadratic functions plays a key role in the field of stability analysis. In such circumstances, the Jensen inequality has become a powerful mathematical tool for stability analysis of time-delay systems. This paper suggests a new class of integral inequalities for quadratic functions via intermediate terms called auxiliary functions, which produce more tighter bounds than what the Jensen inequality produces. To show the strength of the new inequalities, their applications to stability analysis for time-delay systems are given with numerical examples.

MSC:
93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
93C23 Control/observation systems governed by functional-differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Richard, J.-P., Time-delay systemsan overview of some recent advances and open problems, Automatica, 39, 10, 1667-1694, (2003) · Zbl 1145.93302
[2] Moon, Y. S.; Park, P.; Kwon, W. H.; Lee, Y. S., Delay-dependent robust stabilization of uncertain state-delayed systems, Int. J. Control, 74, 14, 1447-1455, (2001) · Zbl 1023.93055
[3] Park, P.; Ko, J. W., Stability and robust stability for systems with a time-varying delay, Automatica, 43, 10, 1855-1858, (2007) · Zbl 1120.93043
[4] Peng, C.; Tian, Y.-C., Improved delay-dependent robust stability criteria for uncertain systems with interval time-varying delay, IET Control Theory Appl., 2, 9, 752-761, (2008)
[5] Ko, J. W.; Park, P. G., Delay-dependent stability criteria for systems with asymmetric bounds on delay derivative, J. Frankl. Inst., 348, 9, 2674-2688, (2011) · Zbl 1239.93089
[6] Jeong, C.; Park, P.; Kim, S. H., Improved approach to robust stability and \(\mathcal{H}_\infty\) performance analysis for systems with an interval time-varying delay, Appl. Math. Comput., 218, 21, 10533-10541, (2012) · Zbl 1253.93103
[7] Kwon, O. M.; Park, M. J.; Park, J. H.; Lee, S. M.; Cha, E. J., Analysis on robust \(\mathcal{H}_\infty\) performance and stability for linear systems with interval time-varying state delays via some new augmented Lyapunov-krasovskii functional, Appl. Math. Comput., 224, 1, 108-122, (2013) · Zbl 1334.93137
[8] Kwon, O. M.; Park, M. J.; Park, J. H.; Lee, S. M.; Cha, E. J., Improved approaches to stability criteria for neural networks with time-varying delays, J. Frankl. Inst., 350, 9, 2710-2735, (2013) · Zbl 1287.93073
[9] Yue, D.; Han, Q.-L.; Lam, J., Network-based robust control of systems with uncertainty, Automatica, 41, 6, 999-1007, (2005) · Zbl 1091.93007
[10] Shao, H., New delay-dependent stability criteria for systems with interval delay, Automatica, 45, 3, 744-749, (2009) · Zbl 1168.93387
[11] Sun, J.; Liu, G.; Chen, J.; Rees, D., Improved delay-range-dependent stability criteria for linear systems with time-varying delays, Automatica, 46, 2, 466-470, (2010) · Zbl 1205.93139
[12] Park, P.; Ko, J. W.; Jeong, C., Reciprocally convex approach to stability of systems with time-varying delays, Automatica, 47, 1, 235-238, (2011) · Zbl 1209.93076
[13] Liu, Y.; Hu, L.-S.; Shi, P., A novel approach on stabilization for linear systems with time-varying input delay, Appl. Math. Comput., 218, 10, 5937-5947, (2012) · Zbl 1243.93103
[14] Tang, M.; Wang, Y.-W.; Wen, C., Improved delay-range-dependent stability criteria for linear systems with interval time-varying delays, IET Control Theory Appl., 6, 6, 868-873, (2012)
[15] Qian, W.; Liu, J., New stability analysis for systems with interval time-varying delay, J. Frankl. Inst., 350, 4, 890-897, (2013) · Zbl 1281.93069
[16] Lee, W. I.; Lee, S. Y.; Park, P., Improved criteria on robust stability and \(\mathcal{H}_\infty\) performance for linear systems with interval time-varying delays via new triple integral functionals, Appl. Math. Comput., 243, 15, 570-577, (2014) · Zbl 1335.93096
[17] Briat, C., Convergence and equivalence results for the jensen׳s inequality; application to time-delay and sampled-data systems, IEEE Trans. Autom. Control, 56, 7, 1660-1665, (2011) · Zbl 1368.26020
[18] Seuret, A.; Gouaisbaut, F., Wirtinger-based integral inequalityapplication to time-delay systems, Automatica, 49, 9, 2860-2866, (2013) · Zbl 1364.93740
[19] A. Seuret, F. Gouaisbaut, E. Fridman, Stability of systems with fast-varying delay using improved Wirtinger׳s inequality, in: Proceedings of IEEE Conference on Decision and Control, 2013, pp. 946-951.
[20] T.H. Lee, J.H. Park, H.Y. Jung, O.M. Kwon, S.M. Lee, Improved results on stability of time-delay systems using Wirtinger-based inequality, in: Proceedings of World Congress of the IFAC, 2014, pp. 6826-6830.
[21] Kwon, O. M.; Park, M. J.; Park, J. H.; Lee, S. M.; Cha, E. J., Stability and \(\mathcal{H}_\infty\) performance analysis for Markovian jump systems with time-varying delays, J. Frankl. Inst., 351, 10, 4724-4748, (2014) · Zbl 1395.93565
[22] Zhang, Z.; Lin, C.; Chen, B., New stability and stabilization conditions for T-S fuzzy systems with time delay, Fuzzy Sets Syst., 263, 0, 82-91, (2015) · Zbl 1361.93031
[23] A. Seuret, F. Gouaisbaut, Complete quadratic Lyapunov functionals using Bessel-Legendre inequality, in: Proceedings of European Control Conference, 2014, pp. 448-453.
[24] Gu, K.; Kharitonov, V. L.; Chen, J., Stability of time-delay systems, (2003), Birkhäuser Basel · Zbl 1039.34067
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.