×

zbMATH — the first resource for mathematics

Discrete Wirtinger-based inequality and its application. (English) Zbl 1395.93448
Summary: In this paper, we derive a new inequality, which encompasses the discrete Jensen inequality. The new inequality is applied to analyze stability of linear discrete systems with an interval time-varying delay and a less conservative stability condition is obtained. Two numerical examples are given to show the effectiveness of the obtained stability condition.

MSC:
93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
93C55 Discrete-time control/observation systems
93C05 Linear systems in control theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Gu, K.; Kharitonov, V. L.; Chen, J., Stability of time-delay systems, (2003), Birkhauser Boston · Zbl 1039.34067
[2] Richard, J. P., Time-delay systemsan overview of some recent advances and open problems, Automatica, 39, 10, 1667-1694, (2003) · Zbl 1145.93302
[3] Xu, S.; Lam, J., A survey of linear matrix inequality techniques in stability analysis of delay systems, Int. J. Syst. Sci., 39, 12, 1095-1113, (2008) · Zbl 1156.93382
[4] M. Wu, Y. He, J.H. She, Stability Analysis and Robust Control of Time-Delay Systems, Science Press, Beijing and Springer-Verlag, Berlin, Heidelberg, 2010. · Zbl 1250.93005
[5] Fridman, E.; Shaked, U., An improved stabilization method for linear time-delay systems, IEEE Trans. Autom. Control, 47, 11, 1931-1937, (2002) · Zbl 1364.93564
[6] F. Gouaisbaut, D. Peaucelle, Delay-dependent stability analysis of linear time delay systems, in: IFAC Workshop on Time Delay Systems, Aquila, Italy, vol. 6 (1), 2006, pp. 54-59.
[7] Yue, D.; Tian, E.; Zhang, Y., A piecewise analysis method to stability analysis of linear continuous/discrete systems with time-varying delay, Int. J. Robust Nonlinear Control, 19, 13, 1493-1518, (2009) · Zbl 1298.93259
[8] Feng, Z.; Lam, J.; Yang, G. H., Optimal partitioning method for stability analysis of continuous/discrete delay systems, Int. J. Robust Nonlinear Control, 25, 4, 559-574, (2015) · Zbl 1312.93092
[9] Kwon, O. M.; Park, J. H., On improved delay-dependent robust control for uncertain time-delay systems, IEEE Trans. Autom. Control, 49, 11, 1991-1995, (2004) · Zbl 1365.93370
[10] Nam, P. T.; Phat, V. N., An improved stability criterion for a class of neutral differential equations, Appl. Math. Lett., 22, 1, 31-35, (2009) · Zbl 1163.34392
[11] Sun, J.; Liu, G. P.; Chen, J.; Rees, D., Improved delay-range-dependent stability criteria for linear systems with time-varying delays, Automatica, 46, 2, 466-470, (2010) · Zbl 1205.93139
[12] Kim, J. H., Note on stability of linear systems with time-varying delay, Automatica, 47, 9, 2118-2121, (2011) · Zbl 1227.93089
[13] Phat, V. N.; Hien, L. V., An application of Razumikhin theorem to exponential stability for linear non-autonomous systems with time-varying delay, Appl. Math. Lett., 22, 9, 1412-1417, (2009) · Zbl 1173.34332
[14] Fridman, E.; Shaked, U.; Liu, K., New conditions for delay-derivative-dependent stability, Automatica, 45, 11, 2723-2727, (2009) · Zbl 1180.93080
[15] He, Y.; Wang, Q.; Lin, C.; Wu, M., Delay-range-dependent stability for systems with time-varying delay, Automatica, 43, 2, 371-376, (2007) · Zbl 1111.93073
[16] Moon, Y. S.; Park, P. G.; Kwon, W. H.; Lee, Y. S., Delay-dependent robust stabilization of uncertain state-delayed systems, Int. J. Control, 74, 14, 1447-1455, (2001) · Zbl 1023.93055
[17] Zhang, X. M.; Wu, M.; She, J. H.; He, Y., Delay-dependent stabilization of linear systems with time-varying state and input delays, Automatica, 41, 8, 1405-1412, (2005) · Zbl 1093.93024
[18] Park, P. G.; Ko, J. W.; Jeong, C., Reciprocally convex approach to stability of systems with time-varying delays, Automatica, 47, 1, 235-238, (2011) · Zbl 1209.93076
[19] Liu, K.; Fridman, E., Wirtinger׳s inequality and Lyapunov-based sampled-data stabilization, Automatica, 48, 1, 102-108, (2012) · Zbl 1244.93094
[20] A. Seuret, F. Gouaisbaut, Integral inequality for time-varying delay systems, in: Proceedings of the European Control Conference, vol. 11, 2013, pp. 3360-3365. · Zbl 1364.93740
[21] Seuret, A.; Gouaisbaut, F., Wirtinger-based integral inequalityapplication to time-delay systems, Automatica, 49, 9, 2860-2866, (2013) · Zbl 1364.93740
[22] Zheng, M.; Li, K.; Fei, M., Comments on “wirtinger-based integral inequalityapplication to time-delay systems [automatica 49 (2013) 2860-2866]”, Automatica, 50, 1, 300-301, (2014)
[23] Gao, H.; Lam, J.; Wang, C.; Wang, Y., Delay-dependent output-feedback stabilisation of discrete-time systems with time-varying state delay, IEE Proc. Control Theory Appl., 151, 6, 691-698, (2004)
[24] Gao, H.; Chen, T., New results on stability of discrete-time systems with time-varying state delay, IEEE Trans. Autom. Control, 52, 2, 328-334, (2007) · Zbl 1366.39011
[25] Zhang, B.; Xu, S.; Zou, Y., Improved stability criterion and its applications in delayed controller design for discrete-time systems, Automatica, 44, 11, 2963-2967, (2008) · Zbl 1152.93453
[26] X.L. Zhu, G.H. Yang, Jensen inequality approach to stability analysis of discrete-time systems with time-varying delay, in: Proceeding American Control Conference, 2008, pp. 1644-1649.
[27] Qiu, J.; Feng, G.; Yang, J., Improved delay-dependent \(\mathcal{H}_\infty\) filtering design for discrete-time polytopic linear delay systems, IEEE Trans. Circuits Syst. II, 55, 2, 178-182, (2008)
[28] Qiu, J.; Feng, G.; Yang, J., New results on robust \(\mathcal{H}_\infty\) filtering design for discrete-time piecewise linear delay systems, Int. J. Control, 82, 1, 183-194, (2008)
[29] Qiu, J.; Feng, G.; Yang, J., A new design of delay-dependent robust \(\mathcal{H}_\infty\) filtering for discrete-time T-S fuzzy systems with time-varying delay, IEEE Trans. Fuzzy Syst., 17, 5, 1044-1058, (2009)
[30] Meng, X.; Lam, J.; Du, B.; Gao, H., A delay-partitioning approach to the stability analysis of discrete-time systems, Automatica, 46, 3, 610-614, (2010) · Zbl 1194.93131
[31] Huang, H.; Feng, G., Improved approach to delay-dependent stability analysis of discrete-time systems with time-varying delay, IET Control Theory Appl., 4, 10, 2152-2159, (2010)
[32] Li, X.; Gao, H., A new model transformation of discrete-time systems with time-varying delay and its application to stability analysis, IEEE Trans. Autom. Control, 56, 9, 2172-2178, (2011) · Zbl 1368.93102
[33] Shao, H.; Han, Q. L., New stability criteria for linear discrete-time systems with interval-like time-varying delays, IEEE Trans. Autom. Control, 56, 3, 619-625, (2011) · Zbl 1368.93478
[34] Liu, J.; Zhang, J., Note on stability of discrete-time time-varying delay systems, IET Control Theory Appl., 6, 2, 335-339, (2012)
[35] Peng, C., Improved delay-dependent stabilisation criteria for discrete systems with a new finite sum inequality, IET Control Theory Appl., 6, 3, 448-453, (2012)
[36] Kwon, O. M.; Park, M. J.; Park, J. H.; Lee, S. M.; Cha, E. J., Improved robust stability criteria for uncertain discrete-time systems with interval time-varying delays via new zero equalities, IET Control Theory Appl., 6, 16, 2567-2575, (2012)
[37] Ramakrishnan, K.; Ray, G., Robust stability criteria for a class of uncertain discrete-time systems with time-varying delay, Appl. Math. Model., 37, 3, 1468-1479, (2013) · Zbl 1351.93111
[38] Kwon, O. M.; Park, M. J.; Park, J. H.; Lee, S. M.; Cha, E. J., Improved delay-dependent stability criteria for discrete-time systems with time-varying delays, Circuits Syst. Signal Process., 32, 4, 1949-1962, (2013)
[39] Zhang, J.; Peng, C.; Zheng, M., Improved results for linear discrete-time systems with an interval time-varying input delay, Int. J. Syst. Sci., (2014)
[40] Kwon, O. M.; Park, M. J.; Park, J. H.; Lee, S. M.; Cha, E. J., Stability and stabilization for discrete-time systems with time-varying delays via augmented Lyapunov-krasovskii functional, J. Frankl. Inst., 350, 3, 521-540, (2013) · Zbl 1269.93089
[41] Lam, J.; Zhang, B.; Chen, Y.; Xu, S., Reachable set estimation for discrete-time linear systems with time delays, Int. J. Robust Nonlinear Control, 25, 2, 269-281, (2015) · Zbl 1305.93034
[42] Oliveira, M. C.D.; Skelton, R. E., Stability tests for constrained linear systems, (2001), Springer Berlin · Zbl 0997.93086
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.